This paper proposes wall function models to simulate the heat transfer around a cylinder in cross flow with an isothermal and rough surface. The selected case has similitudes with aircraft wing icing: the ice roughness shape, height and distribution. Moreover, the flow is somewhat similar to that found on iced airfoil; and the surface is isothermal like when icing. The Reynolds-Averaged Navier-Stokes, turbulence, energy and mass conservation 7-equation system is solved by two Computational Fluid Dynamics (CFD) codes. To represent accurately the effects of roughness on the heat transfer, the present authors had to modify both codes and to propose new thermal wall functions for them. In addition, it was implemented a momentum wall function that is not so common in CFD codes but it is a standard in aircraft icing simulation. Basically, the present paper is focused on presenting the simulation results improvement obtained by the implementation of thermal wall functions that also considered the effect thermal resistance of viscous sub-layer on convective heat transfer. The numerical results were compared to experimental data of heat transfer around cylinders with an isothermally heated surface and equivalent sand grain roughness height of K s /D = 900 • 10 −5. For the selected case, the flow regime was trans-critical at Reynolds numbers Re = u e • D/ν = 2.2 • 10 5. Due to significant blockage effects present in the experimental data, the tunnel walls were also meshed and simulated. In sum, the implementation into CFD codes was considered adequate because the results were close to experimental data around the whole cylinder surface, not only along the leading edge or the separated region. The results accuracy were improved when compared with CFD factory original models. However, the results indicate that further works on wall functions and their validation are required before using CFD in wing aircraft icing.
The objective of the present work is to study what type of effects the dimensionless jet parameters really consider. To do it, three classical dimensionless jet parameters are redeveloped using an unified methodology. This methodology is based on the integral balances of mass and momentum. The momentum balance terms are classified as inertial or pressure terms and as flux or source terms. This redevelopment enlighten the meaning of the dimensionless jet parameters and allows the definition of a new set of parameters. A scaling methodology is presented to compare the dimensionless jet parameters adequacy in scaling center line jet velocity and jet width at different operational conditions. Two regimes are distinguished: low pressure gradient and high pressure gradient. The scaling for low pressure gradient is based on two criteria: the diffusivity ratio proportionality and the linear expansion rate of the jet. The diffusivity is modelled using the Prandtl’s mixing length model and a dimensional analysis based only on inertial momentum terms. The scaling for high pressure gradient is based on jet velocities and widths scaled simultaneously by pressure and inertial momentum terms. The application of this methodology to jet literature data shows jet similarity for low and high pressure gradients. However, some drawbacks are identified in scaling the jet width at high pressure gradients.
A Multi-Zone Radiation method was employed in a conceptual simulator of gas turbine combustion chamber, which is configured as tubular, reverse flow and no film cooling, and equiped with a lean, premixed, low swirl and low Nox burner. Such simplified simulator is typically used for conceptual trade-off and optimization studies during the pre-design phase, when there is no experimental data available and when the number of runs can reach the order of hundreds or more. In the standard procedure, the convection heat fluxes of the annulus passage and combustion chamber liner are approximated by semi-empirical correlations; the thermal radiation flux is estimated by use of viewing factors between adjacent zones only; the heat conduction is estimated by a one-dimensional model. However, the present paper introduces a more accurate and theoretically rigorous estimation of the radiative heat transfer by adopting a Multi-Zone Method. The numerical code inputs are: the geometry; the flame burnout profile at the combustion region; and the mass fluxes through the dilution holes and the burner. The main outputs of the simulator are the average temperature and heat fluxes by conduction, radiation and convection of each zone. The present modeling strategy enabled the authors to assess the basic design characteristics of a conceptual model of combustion chamber, such as its length, its inlet air temperature, its combustion region equivalence ratio, its flame burnout profile, and its wall emissivities. Finally, it has advantages over the simplified radiation models because it takes into account the effects of temperature, burn-out and composition variations of all zones on each zone and vice-versa.
AGRADECIMENTOSAo meu orientador Eng. Prof. Dr. Marcos de Mattos Pimenta cuja estratégia de trabalho sempre priorizou a qualidade. Talvez, a principal lição aprendida seja sempre fazer o melhor com o que temos disponível, independentemente das mudanças nas condições de contorno, que não estão sob nosso controle.Foi uma estratégia arriscada, porém, justificada pelas possibilidades de ganhos. Esta estratégia resultou em uma tese da qual me orgulho, pois tive que trabalhar no meu limite. Se dependesse apenas de mim, eu teria escolhido caminhos menos arriscados, porém, com possibilidades de ganhos menores.O resultado seria apenas mais um trabalho, um relatório a mais. Acredito que esta lição será muito útil para as minhas próximas empreitadas.Ao CNPq pela bolsa que financiou a maior parte do meu doutorado. Ao IPT que financiou o início do meu doutorado e manteve a permissão de uso de suas instalações mesmo após a minha saída do instituto. À ATS 4 i que cedeu seus estagiários para auxiliar no desenvolvimento de minha tese.Aos colegas que me auxiliaram nas atividades do doutorado, especialmente aqueles que continuavam me ajudando quando a situação ordenava o contrá-rio. Não vou citar nomes para evitar injustiças.À minha mãe Teruko, à minha irmã Márcia e à minha esposa Elisa que sempre mantiveram o apoio e o incentivo para eu continuar no Doutorado. Especialmente nos momentos mais difícies, quando os recursos, o tempo, o dinheiro e a motivação estavam em baixa. Eu sei que a minha dedicação ao doutorado resultou em sacrifícios para todos nós. Sinceramente, MUITO OBRIGADO.Ao meu pai Toshihiko (in memoriam) e aos meus filhos Pedro e João por terem sido minha fonte de inspiração e criatividade. RESUMOO principal objetivo desta tese é estudar os efeitos inerciais e de pressão do escoamento médio sobre o próprio escoamento médio de jatos bi-dimensionais confinados. Os escoamentos considerados no presente trabalho são turbulentos, isotérmicos, incompressíveis e compostos por fluidos simples.A introdução e a revisão bibliográfica são feitas por meio da apresentação: das motivações tecnológicas e fundamentais para a escolha do tema da presente tese; do cenário no qual a abordagem adotada está inserida; dos parâmetros adimensionais usualmente adotados na literatura para caracterizar os jatos bidimensionais confinados (parâmetros clássicos); e dos dados experimentais levantados na literatura na forma de correlações semi-empíricas, e de perfis de propriedades do escoamento.A presente tese desenvolve uma abordagem integral e adimensional para jatos confinados. As hipóteses adotadas nesta abordagem são aquelas relativas a escoamentos em camada fina cisalhante, e a escoamentos não dissipativos. A abordagem é baseada em balanços integrais de massa e quantidade de movimento. Os termos de quantidade de movimento são classificados como inerciais ou de pressão; e como fluxos, forças ou fontes. Esta classificação permite analisar os efeitos considerados pelos parâmetros adimensionais clássicos. Os parâmetros clássicos não satizfazem simulta...
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.