We show that any compact surface of genus zero in $${\mathbb {R}}^3$$
R
3
that satisfies a quasiconformal inequality between its principal curvatures is a round sphere. This solves an old open problem by H. Hopf, and gives a spherical version of Simon’s quasiconformal Bernstein theorem. The result generalizes, among others, Hopf’s theorem for constant mean curvature spheres, the classification of round spheres as the only compact elliptic Weingarten surfaces of genus zero, and the uniqueness theorem for ovaloids by Han, Nadirashvili and Yuan. The proof relies on the Bers-Nirenberg representation of solutions to linear elliptic equations with discontinuous coefficients.
We show that any compact surface of genus zero in R 3 that satisfies a quasiconformal inequality between its principal curvatures is a round sphere. This solves an old open problem by H. Hopf, and gives a spherical version of Simon's quasiconformal Bernstein theorem. The result generalizes, among others, Hopf's theorem for constant mean curvature spheres, the classification of round spheres as the only compact elliptic Weingarten surfaces of genus zero, and the uniqueness theorem for ovaloids by Han, Nadirashvili and Yuan. The proof relies on the Bers-Nirenberg representation of solutions to linear elliptic equations with discontinuous coefficients.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.