The forests of Amazonia are among the most biodiverse plant communities on Earth. Given the immediate threats posed by climate and land-use change, an improved understanding of how this extraordinary biodiversity is spatially organized is urgently required to develop effective conservation strategies. Most Amazonian tree species are extremely rare, but a small number are common across the region. Indeed, just 227 "hyperdominant" species account for more than 50% of all individuals > 10 cm dbh. Yet, the degree to which the phenomenon of hyperdominance is sensitive to tree size, the extent to which the composition of dominant species changes with size-class, and how evolutionary history constrains tree hyperdominance, all remain unknown. Here, we use a unique floristic dataset to show that,
Meeting international commitments to protect 17% of terrestrial ecosystems worldwide will require >3 million square kilometers of new protected areas and strategies to create those areas in a way that respects local communities and land use. In 2000–2016, biological and social scientists worked to increase the protected proportion of Peru’s largest department via 14 interdisciplinary inventories covering >9 million hectares of this megadiverse corner of the Amazon basin. In each landscape, the strategy was the same: convene diverse partners, identify biological and sociocultural assets, document residents’ use of natural resources, and tailor the findings to the needs of decision-makers. Nine of the 14 landscapes have since been protected (5.7 million hectares of new protected areas), contributing to a quadrupling of conservation coverage in Loreto (from 6 to 23%). We outline the methods and enabling conditions most crucial for successfully applying similar campaigns elsewhere on Earth.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.