A set of open-source routines capable of identifying possible oil-like spills based on two random forest classifiers were developed and tested with a Sentinel-1 SAR image dataset. The first random forest model is an ocean SAR image classifier where the labeling inputs were oil spills, biological films, rain cells, low wind regions, clean sea surface, ships, and terrain. The second one was a SAR image oil detector named “Radar Image Oil Spill Seeker (RIOSS)”, which classified oil-like targets. An optimized feature space to serve as input to such classification models, both in terms of variance and computational efficiency, was developed. It involved an extensive search from 42 image attribute definitions based on their correlations and classifier-based importance estimative. This number included statistics, shape, fractal geometry, texture, and gradient-based attributes. Mixed adaptive thresholding was performed to calculate some of the features studied, returning consistent dark spot segmentation results. The selected attributes were also related to the imaged phenomena’s physical aspects. This process helped us apply the attributes to a random forest, increasing our algorithm’s accuracy up to 90% and its ability to generate even more reliable results.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.