The salient issues related to lightning protection of long wind-turbine blades are discussed in this paper. We show that the lightning protection of modern wind turbines presents a number of new challenges due to the geometrical, electrical, and mechanical particularities of the turbines. The risk assessment for the lightning-protection-system design is solely based today on downward flashes. We show in this paper that the majority of the strikes to modern turbines are expected to be upward lightning. Neglecting upward flashes, as implicitly done by the International Electrotechnical Commission, might result in an important underestimation of the actual number of strikes to a tall wind turbine. In addition, we show that the rotation of the blades may have a considerable influence on the number of strikes to modern wind turbines as these may be triggering their own lightning. Because wind turbines are tall structures, the lightning currents that are injected by return strokes into the turbines will be affected by reflections at the top, bottom, and junction of the blades with the static base of the turbine. This is of capital importance when calculating the protection of internal circuitry that may be affected by magnetically induced electromotive forces that depend directly on the characteristics of the current in the turbine. The presence of carbon-reinforced plastics (CRP) in the blades introduces a new set of problems to be dealt with in the design of the turbines' lightning protection system. One problem is the mechanical stress resulting from the energy dissipation in CRP laminates due to the circulation of eddy currents. We evaluate in this paper the dissipated energy and propose recommendations as to the number of down conductors and their orientation with respect to the CRP laminates so that the dissipated energy is minimized. It is also emphasized that the high static fields under thunderclouds might have an influence on the moving carbon-fiber parts. This issue needs to be addressed by lightning protection researchers and Manuscript engineers. Representative full-scale blade tests are still complex because lightning currents from an impulse current generator are conditioned to the electrical characteristics of the element under test and return paths. It is therefore desirable to complement laboratory tests with theoretical and computer modeling for the estimation of fields, currents, and voltages within the blades.
Abstract-In this paper, we present a theoretical analysis of the propagation effects of lightning electromagnetic fields over a mountainous terrain. The analysis is supported by experimental observations consisting of simultaneous records of lightning currents and electric fields associated with upward negative lightning flashes to the instrumented Säntis tower in Switzerland. The propagation of lightning electromagnetic fields along the mountainous region around the Säntis tower is simulated using a full-wave approach based on the finite-difference time-domain method and using the two-dimensional topographic map along the direct path between the tower and the field measurement station located at about 15 km from the tower. We show that, considering the real irregular terrain between the Säntis tower and the field measurement station, both the waveshape and amplitude of the simulated electric fields associated with return strokes and fast initial continuous current pulses are in excellent agreement with the measured waveforms. On the other hand, the assumption of a flat ground results in a significant underestimation of the peak electric field. Finally, we discuss the sensitivity of the obtained results to the assumed values for the return stroke speed and the ground conductivity, the adopted return stroke model, as well as the presence of the building on which the sensors were located.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.