We explore ultraviolet switch models for the dispersal of circumstellar discs in T Tauri stars that involve both photoevaporation by the central star and viscous evolution. We show that in combination these processes generate the observed ‘two‐time‐scale’ behaviour for the dispersal of such discs, whereby the disc is rapidly dispersed at the end of its life on a time‐scale that is a small fraction of the disc lifetime. This switch is activated when the accretion rate through the disc declines to a low level (a few times 10−10 M⊙ yr−1) such that it roughly matches the rate of photoevaporative mass loss from the disc outside . At this point, the inner disc is deprived of further replenishment from larger radii and empties on to the central star on its own short viscous time‐scale. This causes the rapid (∼105‐yr) decline in accretion rate on to the central star and in all disc‐related emission shortward of 10 μm. We discuss the implications of this model for the detection of millimetre emission around weak‐line T Tauri stars, and also point out the consequences of such a sudden draining for planet formation in the inner regions of circumstellar discs.
Single-molecule force experiments in vitro enable the characterization of the mechanical response of biological matter at the nanometer scale. However, they do not reveal the molecular mechanisms underlying mechanical function. These can only be readily studied through molecular dynamics simulations of atomic structural models: "in silico" (by computer analysis) single-molecule experiments. Steered molecular dynamics simulations, in which external forces are used to explore the response and function of macromolecules, have become a powerful tool complementing and guiding in vitro single-molecule experiments. The insights provided by in silico experiments are illustrated here through a review of recent research in three areas of protein mechanics: elasticity of the muscle protein titin and the extracellular matrix protein fibronectin; linker-mediated elasticity of the cytoskeleton protein spectrin; and elasticity of ankyrin repeats, a protein module found ubiquitously in cells but with an as-yet unclear function.
The proteins that form the permeation pathway of mechanosensory transduction channels in inner-ear hair cells have not been definitively identified. Genetic, anatomical, and physiological evidence support a role for transmembrane channel-like protein (TMC) 1 in hair cell sensory transduction, yet the molecular function of TMC proteins remains unclear. Here, we provide biochemical evidence suggesting TMC1 assembles as a dimer, along with structural and sequence analyses suggesting similarity to dimeric TMEM16 channels. To identify the pore region of TMC1, we used cysteine mutagenesis and expressed mutant TMC1 in hair cells of Tmc1/2-null mice. Cysteine-modification reagents rapidly and irreversibly altered permeation properties of mechanosensory transduction. We propose that TMC1 is structurally similar to TMEM16 channels and includes ten transmembrane domains with four domains, S4-S7, that line the channel pore. The data provide compelling evidence that TMC1 is a pore-forming component of sensory transduction channels in auditory and vestibular hair cells.
Hearing and balance use hair cells in the inner ear to transform mechanical stimuli into electrical signals1. Mechanical force from sound waves or head movements is conveyed to hair-cell transduction channels by tip links2,3, fine filaments formed by two atypical cadherins: protocadherin-15 and cadherin-234,5. These two proteins are products of deafness genes6–10 and feature long extracellular domains that interact tip-to-tip5,11 in a Ca2+-dependent manner. However, the molecular architecture of the complex is unknown. Here we combine crystallography, molecular dynamics simulations, and binding experiments to characterize the cadherin-23 and protocadherin-15 bond. We find a unique cadherin interaction mechanism, with the two most N-terminal cadherin repeats (EC1+2) of each protein interacting to form an overlapped, antiparallel heterodimer. Simulations predict that this tip-link bond is mechanically strong enough to resist forces in hair cells. In addition, the complex becomes unstable upon Ca2+ removal due to increased flexure of Ca2+-free cadherin repeats. Finally, we use structures and biochemical measurements to understand molecular mechanisms by which deafness mutations disrupt tip-link function. Overall, our results shed light on the molecular mechanics of hair-cell sensory transduction and on new interaction mechanisms for cadherins, a large protein family implicated in tissue and organ morphogenesis12,13, neural connectivity14, and cancer15.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.