ABSTRACT. This paper deals with an analytical model of a rigid rotor supported by hydrodynamic journal bearings where the plane separation technique together with the Artificial Neural Network (ANN) is used to predict the location and magnitude of the correction masses for balancing the rotor bearing system. The rotating system is modeled by applying the rigid shaft Stodola-Green model, in which the shaft gyroscopic moments and rotatory inertia are accounted for, in conjunction with the hydrodynamic cylindrical journal bearing model based on the classical Reynolds equation. A linearized perturbation procedure is employed to render the lubrication equations from the Reynolds equation, which allows predicting the eight linear force coefficients associated with the bearing direct and cross-coupled stiffness and damping coefficients. The results show that the methodology presented is efficient for balancing rotor systems. This paper gives a step further in the monitoring process, since Artificial Neural Network is normally used to predict, not to correct the mass unbalance. The procedure presented can be used in turbo machinery industry to balance rotating machinery that require continuous inspections. Some simulated results will be used in order to clarify the methodology presented.Key words: rigid balancing, rotor balancing, artificial neural network.RESUMO. Balanceamento de um rotor rígido, usando redes neurais artificiais para a predição das massas de correção. Este trabalho foi desenvolvido com o objetivo de empregar a técnica de balanceamento de separação de planos juntamente com Redes Neurais Artificiais (RNA) para a predição da localização e massas de correção para o balanceamento de um sistema rotor-mancal, para tal, foi empregado um modelo analítico consitituído por um rotor rígido apoiado em mancais hidrodinâmicos. O sistema rotativo foi modelado com base no modelo de eixo rígidos de Stodola-Green, no qual foram considerados o efeito girocópico e a inércia rotatória, além de um modelo de mancal hidrodinâmico cilíndrico baseado nas equações de Reynolds que permitiu a determinação de oito coeficientes lineares de força associados com os coeficientes de rigidez e amortecimento diretos e cruzados do mancal. Os resultados mostraram que a metodologia apresentada foi eficiente para o balanceamento de rotores. Este trabalho fornece grande contribuição para o processo de monitoramento, uma vez que Redes Neurais Artificiais normalmente são empregadas para identificação, e não para a correção do desbalanceamento. O procedimento apresentado pode ser empregado no balanceamento de turbomáquinas industriais, as quais necessitam de contínuas avaliações. Resultados simulados são apresentados com o objetivo de ilustrar metodologia de balanceamento proposta.Palavras-chave: balanceamento rígido, balanceamento, redes neurais artificiais.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.