An important stage in severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) life cycle is the binding of the spike (S) protein to the angiotensin converting enzyme-2 (ACE2) host cell receptor. Therefore, to explore conserved features in spike protein dynamics and to identify potentially novel regions for drugging, we measured spike protein variability derived from 791 viral genomes and studied its properties by molecular dynamics (MD) simulation. The findings indicated that S2 subunit (heptad-repeat 1 (HR1), central helix (CH), and connector domain (CD) domains) showed low variability, low fluctuations in MD, and displayed a trimer cavity. By contrast, the receptor binding domain (RBD) domain, which is typically targeted in drug discovery programs, exhibits more sequence variability and flexibility. Interpretations from MD simulations suggest that the monomer form of spike protein is in constant motion showing transitions between an “up” and “down” state. In addition, the trimer cavity may function as a “bouncing spring” that may facilitate the homotrimer spike protein interactions with the ACE2 receptor. The feasibility of the trimer cavity as a potential drug target was examined by structure based virtual screening. Several hits were identified that have already been validated or suggested to inhibit the SARS-CoV-2 virus in published cell models. In particular, the data suggest an action mechanism for molecules including Chitosan and macrolides such as the mTOR (mammalian target of Rapamycin) pathway inhibitor Rapamycin. These findings identify a novel small molecule binding-site formed by the spike protein oligomer, that might assist in future drug discovery programs aimed at targeting the coronavirus (CoV) family of viruses.
An important stage in SARS-CoV-2 life cycle is the fusion of spike(S) protein with the ACE2 host-cell receptor. Therefore, to explore conserved features in S protein dynamics and to identify potentially novel regions for drugging, we measured variability derived from 791 viral genomes and studied its properties by MD simulation. The findings indicated that S2 subunit (HR1, CH, and CD domains) showed low variability, low fluctuations in MD, and displayed a trimer cavity. By contrast, the RBD domain, which is typically targeted in drug discovery programmes, exhibits more sequence variability and flexibility. Interpretations from MD suggest that the monomer is in constant motion showing transitions up-to-down state, and the trimer cavity may function as a 'bouncing spring' that may facilitates S protein interactions with ACE2. Feasibility of trimer cavity for potential drug target was examined by SBVS screening. Several hits that have already been validated or suggested to inhibit the SARS-CoV-2 virus in cell systems were identified; in particular, the data suggest an action mechanism for such molecules including Chitosan and macrolide types. These findings identify a novel binding-site formed by the S protein, that might assist in future drug discovery programmes aimed at targeting the CoV family of viruses.
The effects of p53 gene inactivation on mutant proteome expression in a human melanoma cell model: Running Title : An isogenic p53-null melanoma cell model for use in mutant proteomics', BBA -Biomembranes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.