Mutations in Optineurin (Optn) gene have been implicated in both familial and sporadic amyotrophic lateral sclerosis (ALS). However, the role of this protein in the central nervous system (CNS) and how it may contribute to ALS pathology is unclear. Here, we found that optineurin actively suppressed RIPK1-dependent signaling by regulating its turnover. Loss-of-OPTN led to progressive dysmyelination and axonal degeneration through engagement of necroptotic machinery, including RIPK1, RIPK3 and MLKL, in the CNS. Furthermore, RIPK1/RIPK3-mediated axonal pathology was commonly observed in SOD1G93A transgenic mice and pathological samples from human ALS. Thus, RIPK1/RIPK3 plays a critical role in mediating progressive axonal degeneration and inhibiting RIPK1 kinase may provide an axonal protective strategy for the treatment of ALS and other human degenerative diseases characterized by axonal degeneration.
Stimulation of cells with TNFα can promote distinct cell death pathways, including RIPK1-independent apoptosis, necroptosis, and RIPK1-dependent apoptosis (RDA)-the latter of which we still know little about. Here we show that RDA involves the rapid formation of a distinct detergent-insoluble, highly ubiquitinated, and activated RIPK1 pool, termed "iuRIPK1." iuRIPK1 forms after RIPK1 activation in TNF-receptor-associated complex I, and before cytosolic complex II formation and caspase activation. To identify regulators of iuRIPK1 formation and RIPK1 activation in RDA, we conducted a targeted siRNA screen of 1,288 genes. We found that NEK1, whose loss-of-function mutations have been identified in 3% of ALS patients, binds to activated RIPK1 and restricts RDA by negatively regulating formation of iuRIPK1, while LRRK2, a kinase implicated in Parkinson's disease, promotes RIPK1 activation and association with complex I in RDA. Further, the E3 ligases APC11 and c-Cbl promote RDA, and c-Cbl is recruited to complex I in RDA, where it promotes prodeath K63-ubiquitination of RIPK1 to lead to iuRIPK1 formation. Finally, we show that two different modes of necroptosis induction by TNFα exist which are differentially regulated by iuRIPK1 formation. Overall, this work reveals a distinct mechanism of RIPK1 activation that mediates the signaling mechanism of RDA as well as a type of necroptosis.
Acute respiratory distress syndrome (ARDS) is a common and often fatal inflammatory lung condition without effective targeted therapies. Regulatory T cells (Tregs) resolve lung inflammation, but mechanisms that enhance Tregs to promote resolution of established damage remain unknown. DNA demethylation at the forkhead box protein 3 (Foxp3) locus and other key Treg loci typify the Treg lineage. To test how dynamic DNA demethylation affects lung injury resolution, we administered the DNA methyltransferase inhibitor 5-aza-2'-deoxycytidine (DAC) to wild-type (WT) mice beginning 24 hours after intratracheal LPS-induced lung injury. Mice that received DAC exhibited accelerated resolution of their injury. Lung CD4(+)CD25(hi)Foxp3(+) Tregs from DAC-treated WT mice increased in number and displayed enhanced Foxp3 expression, activation state, suppressive phenotype, and proliferative capacity. Lymphocyte-deficient recombinase activating gene-1-null mice and Treg-depleted (diphtheria toxin-treated Foxp3(DTR)) mice did not resolve their injury in response to DAC. Adoptive transfer of 2 × 10(5) DAC-treated, but not vehicle-treated, exogenous Tregs rescued Treg-deficient mice from ongoing lung inflammation. In addition, in WT mice with influenza-induced lung inflammation, DAC rescue treatment facilitated recovery of their injury and promoted an increase in lung Treg number. Thus, DNA methyltransferase inhibition, at least in part, augments Treg number and function to accelerate repair of experimental lung injury. Epigenetic pathways represent novel manipulable targets for the treatment of ARDS.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.