The assembly mechanism of hierarchical materials controlled by the choice of solvent and presence of spectator ions. In this paper, we use enhanced sampling molecular dynamics methods to investigate these effects on the configurational landscape of metal-linker interactions in the early stages of synthesis, using MIL-101(Cr) as a prototypical example. Microsecond-long welltempered metadynamics (WTmetaD) simulations uncover a complex free energy structural landscape, with distinct crystal (C) and non-crystal (NC) like configurations and their equilibrium population. In presence of ions (Na+, F-), we observe a complex effect on the crystallinity of secondary building units (SBUs), by encouraging/suppressing salt bridges between C configurations and consequently controlling the percentage of defects. Solvent effects are assessed by introducing N, N dimethylformamide (DMF) instead of water, where SBU adducts are appreciably more stable and compact. These results shed light on how solvent and ionic strength impact the free energy of assembly phenomena that ultimately control material synthesis
<div><div><div><p>The assembly mechanism of hierarchical materials controlled by the choice of solvent and presence of spectator ions. In this paper, we use enhanced sampling molecular dynamics methods to investigate these effects on the configurational landscape of metal-linker interactions in the early stages of synthesis, using MIL-101(Cr) as a prototypical example. Microsecond-long well-tempered metadynamics (WTmetaD) simulations uncover a complex free energy structural landscape, with distinct crystal (C) and non-crystal (NC) like configurations and their equilibrium population. In presence of ions (Na+, F-), we observe a complex effect on the crystallinity of secondary building units (SBUs), by encouraging/suppressing salt bridges between C configurations and consequently controlling the percentage of defects. Solvent effects are assessed by introducing N, N dimethyl formamide (DMF) instead of water, where SBU adducts are appreciably more stable and compact. These results shed light on how solvent and ionic strength impact the free energy of assembly phenomena that ultimately control materials synthesis and defect formation.</p></div></div></div>
<div><div><div><p>The assembly mechanism of hierarchical materials controlled by the choice of solvent and presence of spectator ions. In this paper, we use enhanced sampling molecular dynamics methods to investigate these effects on the configurational landscape of metal-linker interactions in the early stages of synthesis, using MIL-101(Cr) as a prototypical example. Microsecond-long well- tempered metadynamics (WTmetaD) simulations uncover a complex free energy structural landscape, with distinct crystal (C) and non-crystal (NC) like configurations and their equilibrium population. In presence of ions (Na+, F-), we observe a complex effect on the crystallinity of secondary building units (SBUs), by encouraging/suppressing salt bridges between C configurations and consequently controlling the percentage of defects. Solvent effects are assessed by introducing N, N dimethylformamide (DMF) instead of water, where SBU adducts are appreciably more stable and compact. These results shed light on how solvent and ionic strength impact the free energy of assembly phenomena that ultimately control material synthesis</p></div></div></div>
<div><div><div><p>The assembly mechanism of hierarchical materials controlled by the choice of solvent and presence of spectator ions. In this paper, we use enhanced sampling molecular dynamics methods to investigate these effects on the configurational landscape of metal-linker interactions in the early stages of synthesis, using MIL-101(Cr) as a prototypical example. Microsecond-long well- tempered metadynamics (WTmetaD) simulations uncover a complex free energy structural landscape, with distinct crystal (C) and non-crystal (NC) like configurations and their equilibrium population. In presence of ions (Na+, F-), we observe a complex effect on the crystallinity of secondary building units (SBUs), by encouraging/suppressing salt bridges between C configurations and consequently controlling the percentage of defects. Solvent effects are assessed by introducing N, N dimethylformamide (DMF) instead of water, where SBU adducts are appreciably more stable and compact. These results shed light on how solvent and ionic strength impact the free energy of assembly phenomena that ultimately control material synthesis</p></div></div></div>
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.