Emerging from 2D printed electronics, 3D printed electronics promise a break-through in additive manufacturing and prototyping of electronics. However, transferring the know-how from 2D flexible electronics to 3D parts with complex structures (e.g. internal vias and external interconnects) might not be a straightforward approach. As an example, the variation of light intensity with respect to the distance and angle of incidence casts doubt on the efficiency of the intense pulsed laser (IPL) as a robust sintering method for metallic traces in 3D printed bulk structures, whereas IPL is currently by far the most prevailing sintering technique for 2D printed flexible electronics. Sintering of metallic traces in 3D printed parts can be executed either as a sequential layer-by-layer printing and processing step (LP) or as a bulk post-processing step (BP). In the current study, a survey on the most common sintering strategies for inkjet printed silver nanoparticles was conducted, while the compatibility to 3D printed structures was brought into the focal point. To discover the capabilities and limitations of six sintering methods (i. e. IPL, ohmic curing, thermal heating, laser, atmospheric plasma and microwave sintering) for 3D printed electronics, a comparative study utilizing the same materials and diagnostic methods was pursued. The results revealed that for 3D functional parts, some of the sintering techniques can be considered as complementary methods for each other, whereas a few showed readily the potential to be adapted in 3D printed electronics production.
For MOEMS devices which do not have intrinsic on-chip feedback, position information can be provided with optical methods, most simply by using a reflection from the backside of a MOEMS scanner. Measurement of timing signals using fast differential photodiodes can be used for resonant scanner mirrors performing sinusoidal motion with large amplitude. While this approach provides excellent accuracy it cannot be directly extended to arbitrary trajectories or static deflection angles. Another approach is based on the measurement of the position of the reflected laser beam with a quadrant diode. In this work, we present position sensing devices based on either principle and compare both approaches showing first experimental results from the implemented devices
Tiltable mirrors, which can be produced in small form factors via MOEMS technology, are widely used for many applications. An independent, accurate and fast feedback of the angle position is demanded by industry. Simple optical tilt angle sensing layouts are analytically described. The concept is based on measuring tilt angle dependent intensity or intensity changes. The performance limits of each layout are evaluated and derived design rules for best linear behavior are given.
Many applications of MOEMS microscanners rely on accurate position feedback. For MOEMS devices which do not have intrinsic on-chip feedback, position information can be provided with optical methods, most simply by using a reflection from the backside of a MOEMS scanner. By measuring the intensity distribution of the reflected beam across a quadrant diode, one can precisely detect the mirror's deflection angles. Previously, we have presented a position sensing device, applicable to arbitrary trajectories, which is based on the measurement of the position of the reflected laser beam with a quadrant diode. In this work, we present a novel setup, which comprises the optical position feedback functionality integrated into the device package itself. The new device's System-in-Package (SiP) design is based on a flip-folded 2.5D PCB layout and fully assembled as small as 9.2×7×4 mm³ in total. The device consists of four layers, which supply the MOEMS mirror, a spacer to provide the required optical path length, the quadrant photo-diode and a laser diode to serve as the light source. In addition to describing the mechanical setup of the novel device, we will present first experimental results and optical simulation studies. Accurate position feedback is the basis for closed-loop control of the MOEMS devices, which is crucial for some applications as image projection for example. Position feedback and the possibility of closed-loop control will significantly improve the performance of these devices.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.