Inspired by nature’s wide range of oxidation-induced modifications to install cross-links and cycles at tyrosine (Tyr) and other phenol-containing residue side chains, we report a Tyr-selective strategy for the preparation of Tyr-linked cyclic peptides. This approach leverages N4-substituted 1,2,4-triazoline-3,5-diones (TADs) as azo electrophiles that react chemoselectively with the phenolic side chain of Tyr residues to form stable C–N1-linked cyclic peptides. In the developed method, a precursor 1,2,4-triazolidine-3,5-dione moiety, also known as urazole, is readily constructed at any free amine revealed on a solid-supported peptide. Once prepared, the N4-substituted urazole peptide is selectively oxidized using mild, peptide-compatible conditions to generate an electrophilic N4-substituted TAD peptide intermediate that reacts selectively under aqueous conditions with internal and terminal Tyr residues to furnish Tyr-linked cyclic peptides. The approach demonstrates good tolerance of native residue side chains and enables access to cyclic peptides ranging from 3- to 11-residues in size (16- to 38-atom-containing cycles). The identity of the installed Tyr-linkage, a stable covalent C–N1 bond, was characterized using NMR spectroscopy. Finally, we applied the developed method to prepare biologically active Tyr-linked cyclic peptides bearing the integrin-binding RGDf epitope.
Inspired by Nature’s wide range of oxidation-induced modifications to install cross-links and cycles at tyrosine (Tyr) and other phenol-containing residue side chains, we report a Tyr-selective strategy for the preparation of Tyr-linked cyclic peptides. This approach leverages N4-substituted 1,2,4-triazoline-3,5-diones (TADs) as azo electrophiles that react chemoselectively with the phenolic side chain of Tyr residues to form stable C–N1-linked cyclic peptides. In the developed method, a precursor 1,2,4-triazolidine-3,5-dione moiety, also known as a urazole, is readily constructed at any free amine revealed on a solid-supported peptide. Once prepared, the N4-substituted urazole peptide is selectively oxidized using mild, peptide-compatible conditions to generate an electrophilic N4-substituted TAD peptide intermediate that reacts selectively under aqueous conditions with internal and terminal Tyr residues to furnish Tyr-linked cyclic peptides. The approach demonstrates good tolerance of native residue side chains and enables access to cyclic peptides ranging from 3- to 11-residues in size (16- to 38-atom-containing cycles). The identity of the installed Tyr-linkage, a stable covalent C–N1 bond, was characterized using NMR spectroscopy. Finally, we applied the developed method to prepare biologically active Tyr-linked cyclic pep-tides bearing the integrin-binding RGDf epitope.
Ribosomally produced and post-translationally modified polypeptides (RiPPs) are a diverse group of natural products that are processed by a variety of enzymes to their biologically relevant forms. PapB is a member of the radical S-adenosyl-l-methionine (rSAM) superfamily that introduces thioether cross-links between Cys and Asp residues in the PapA RiPP. We report that PapB has high tolerance for variations in the peptide substrate. Our results demonstrate that branched side chains in the thiol- and carboxylate-containing residues are processed and that lengthening of these groups to homocysteine and homoglutamate does not impair the ability of PapB to form thioether cross-links. Remarkably, the enzyme can even cross-link a peptide substrate where the native Asp carboxylate moiety is replaced with a tetrazole. We show that variations to residues embedded between the thiol- and carboxylate-containing residues are tolerated by PapB, as peptides containing both bulky (e.g., Phe) and charged (e.g., Lys) side chains in both natural L- and unnatural D-forms are efficiently cross-linked. Diastereomeric peptides bearing (2S,3R)- and (2S,3S)-methylaspartate are processed by PapB to form cyclic thioethers with markedly different rates, suggesting the enzymatic hydrogen atom abstraction event for the native Asp-containing substrate is diastereospecific. Finally, we synthesized two diastereomeric peptide substrates bearing E- and Z-configured γ,δ-dehydrohomoglutamate and show that PapB promotes addition of the deoxyadenosyl radical (dAdo•) instead of hydrogen atom abstraction. In the Z-configured γ,δ-dehydrohomoglutamate substrate, a fraction of the dAdo-adduct peptide is thioether cross-linked. In both cases, there is evidence for product inhibition of PapB, as the dAdo-adducts likely mimic the native transition state where dAdo• is poised to abstract a substrate hydrogen atom. Collectively, these findings provide critical insights into the arrangement of reacting species in the active site of the PapB, reveal unusual promiscuity, and highlight the potential of PapB as a tool in the development peptide therapeutics.
Inspired by Nature’s wide range of oxidation-induced modifications to install cross-links and cycles at tyrosine (Tyr) and other phenol-containing residue side chains, we report a Tyr-selective strategy for the preparation of Tyr-linked cyclic peptides. This approach leverages N4-substituted 1,2,4-triazoline-3,5-diones (TADs) as azo electrophiles that react chemoselectively with the phenolic side chain of Tyr residues to form stable C–N1-linked cyclic peptides. In the developed method, a precursor 1,2,4-triazolidine-3,5-dione moiety, also known as a urazole, is readily constructed at any free amine revealed on a solid-supported peptide. Once prepared, the N4-substituted urazole peptide is selectively oxidized using mild, peptide-compatible conditions to generate an electrophilic N4-substituted TAD peptide intermediate that reacts selectively under aqueous conditions with internal and terminal Tyr residues to furnish Tyr-linked cyclic peptides. The approach demonstrates good tolerance of native residue side chains and enables access to cyclic peptides ranging from 3- to 11-residues in size (16- to 38-atom-containing cycles). The identity of the installed Tyr-linkage, a stable covalent C–N1 bond, was characterized using NMR spectroscopy. Finally, we applied the developed method to prepare biologically active Tyr-linked cyclic pep-tides bearing the integrin-binding RGDf epitope.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.