This paper presents findings from a study of Instagram use and funerary practices that analysed photographs shared on public profiles tagged with '#funeral'. We found that the majority of images uploaded with the hashtag #funeral often communicated a person's emotional circumstances and affective context, and allowed them to reposition their funeral experience amongst wider networks of acquaintances, friends, and family. We argue that photo-sharing through Instagram echoes broader shifts in commemorative and memorialization practices, moving away from formal and institutionalized rituals to informal and personalized, vernacular practices. Finally, we consider how Instagram's 'platform vernacular' unfolds in relation to traditions and contexts of death, mourning, and memorialization. This research contributes to a broader understanding of how platform vernaculars are shaped through the logics of architecture and use. This research also directly contributes to the understanding of death and digital media by examining how social media is being mobilized in relation to death, the differences that different media platforms make, and the ways social media are increasingly entwined with the places, events, and rituals of mourning.
Transient technology is an emerging field that requires materials, devices, and systems to be capable of disappearing with minimal or non-traceable remains over a period of stable operation. Electronics with the capability of disintegrating or vanishing after stable operation are becoming an interesting research topic and have attracted increasing attentions. In recent years, transience technology has been extended to intelligence applications, bioelectronics and environmental monitoring systems, and energy harvesters and storage. Although the transient concept has only a few years of development, this emerging transient technology is believed to find more opportunities in the fast development of advanced electronics. In this review, we will examine recent progress in the development of transient electronics. First, an overview of various transient materials, including metals, polymers, and semiconductor materials, is described. Second, recent progress in the design and development of transient electronics is reviewed. Third, transient energy storage, focusing on primary batteries and secondary batteries, is explored. We end the review with a conclusion and outlook, pointing out further designs and developments of transient technology based on transient materials towards high-performance evanescent electronics and energy storage.
The interface between solid electrolytes and Li metal is a primary issue for solid-state batteries. Introducing a metal interlayer to conformally coat solid electrolytes can improve the interface wettability of Li metal and reduce the interfacial resistance, but the mechanism of the metal interlayer is unknown. In this work, we used magnesium (Mg) as a model to investigate the effect of a metal coating on the interfacial resistance of a solid electrolyte and Li metal anode. The Li-Mg alloy has low overpotential, leading to a lower interfacial resistance. Our motivation is to understand how the metal interlayer behaves at the interface to promote increased Li-metal wettability of the solid electrolyte surface and reduce interfacial resistance. Surprisingly, we found that the metal coating dissolved in the molten piece of Li and diffused into the bulk Li metal, leading to a small and stable interfacial resistance between the garnet solid electrolyte and the Li metal. We also found that the interfacial resistance did not change with increase in the thickness of the metal coating (5, 10, and 100 nm), due to the transient behavior of the metal interface layer.
Lithium-sulfur (Li-S) batteries have been intensively investigated as a next-generation rechargeable battery due to their high energy density of 2600 W·h kg(-1) and low cost. However, the systemic issues of Li-S batteries, such as the polysulfide shuttling effect and low Coulombic efficiency, hinder the practical use in commercial rechargeable batteries. The introduction of a conductive interlayer between the sulfur cathode and separator is a promising approach that has shown the dramatic improvements in Li-S batteries. The previous interlayer work mainly focused on the physical confinement of polysulfides within the cathode part, without considering the further entrapment of the dissolved polysulfides. Here, we designed an ultrathin poly(acrylic acid) coated single-walled carbon nanotube (PAA-SWNT) film as a synergic functional interlayer to address the issues mentioned above. The designed interlayer not only lowers the charge transfer resistance by the support of the upper current collector but also localizes the dissolved polysulfides within the cathode part by the aid of a physical blocking and chemical bonding. With the synergic combination of PAA and SWNT, the sulfur cathode with a PAA-SWNT interlayer maintained higher capacity retention over 200 cycles and achieved better rate retention than the sulfur cathode with a SWNT interlayer. The proposed approach of combining a functional polymer and conductive support material can provide an optimiztic strategy to overcome the fundamental challenges underlying in Li-S batteries.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.