BACKGROUND The prevention of bleeding with adequately sustained levels of clotting factor, after a single therapeutic intervention and without the need for further medical intervention, represents an important goal in the treatment of hemophilia. METHODS We infused a single-stranded adeno-associated viral (AAV) vector consisting of a bioengineered capsid, liver-specific promoter and factor IX Padua (factor IX–R338L) transgene at a dose of 5×1011 vector genomes per kilogram of body weight in 10 men with hemophilia B who had factor IX coagulant activity of 2% or less of the normal value. Laboratory values, bleeding frequency, and consumption of factor IX concentrate were prospectively evaluated after vector infusion and were compared with baseline values. RESULTS No serious adverse events occurred during or after vector infusion. Vector-derived factor IX coagulant activity was sustained in all the participants, with a mean (±SD) steady-state factor IX coagulant activity of 33.7±18.5% (range, 14 to 81). On cumulative follow-up of 492 weeks among all the participants (range of follow-up in individual participants, 28 to 78 weeks), the annualized bleeding rate was significantly reduced (mean rate, 11.1 events per year [range, 0 to 48] before vector administration vs. 0.4 events per year [range, 0 to 4] after administration; P = 0.02), as was factor use (mean dose, 2908 IU per kilogram [range, 0 to 8090] before vector administration vs. 49.3 IU per kilogram [range, 0 to 376] after administration; P = 0.004). A total of 8 of 10 participants did not use factor, and 9 of 10 did not have bleeds after vector administration. An asymptomatic increase in liver-enzyme levels developed in 2 participants and resolved with short-term prednisone treatment. One participant, who had substantial, advanced arthropathy at baseline, administered factor for bleeding but overall used 91% less factor than before vector infusion. CONCLUSIONS We found sustained therapeutic expression of factor IX coagulant activity after gene transfer in 10 participants with hemophilia who received the same vector dose. Transgene-derived factor IX coagulant activity enabled the termination of baseline prophylaxis and the near elimination of bleeding and factor use. (Funded by Spark Therapeutics and Pfizer; ClinicalTrials.gov number, NCT02484092.)
The first results of electrospinning fibrinogen nanofibers for use as a tissue-engineering scaffold, wound dressing, or hemostatic bandage are reported. Structures composed of fibrinogen fibers with an average diameter of 80−700 nm were electrospun from solutions composed of human or bovine fibrinogen fraction I dissolved in 1,1,1,3,3,3-hexafluoro-2-propanol and minimal essential medium (Earle's salts). In summary, the electrospinning process is a simple and efficient technique for the fabrication of 3D structures composed of fibrinogen fibers, as would be present in the physiologic environment.
In agreement with earlier observations that the angular dependence of light scattering by fibrin gels obeys the theory for light scattering by very long and thin rigid rodlike particles (intensity proportional to the square of half the scattering angle), we find that the turbidity, tau, of the less opaque gels varies as the inverse third power of the wavelength, lambda. Mass-length ratios of the fibers calculated from these two measurements closely agree. For fibrin gels containing fibers with a very high mass-length ratio (of which we had not been able to obtain interpretable scattering data), the turbidity is found not quite to vary as 1/lambda3. For these opaque gels, the fiber diameter is no longer negligible with respect to the wavelength. It is shown how the radius of gyration of the fiber cross section (and therefore the radius of cylindrical fibers) can be obtained from the ratio of slope and intercept of a plot of 1/tau lambda3 vs. 1/lambra2. The square of the radius of the fibers is found to be proportional to the mass-length ratio. The density of the fibers is calculated to be 0.28. This corresponds to a ratio of fiber volume to volume of protein contained in the fiber of 5.0.
This article reviews work performed at the Medical College of Virginia of Virginia Commonwealth University during the development of a whole-blood assay of platelet function. The new assay is capable of assessing platelet function during clotting and thus allows measurement of the contribution of platelets to thrombin generation. Because platelets are monitored in the presence of thrombin, the test gages platelets under conditions of maximal activation. Three parameters are simultaneously assessed on one 700 microL sample of citrated whole blood. Platelet contractile force (PCF), the force produced by platelets during clot retraction, is directly measured as a function of time. This parameter is sensitive to platelet number, platelet metabolic status, glycoprotein IIb/IIIa status, and the presence of antithrombin activities. Clot elastic modulus (CEM), also measured as a function of time, is sensitive to fibrinogen concentration, platelet concentration, the rate of thrombin generation, the flexibility of red cells, and the production of force by platelets. The third parameter, the thrombin generation time (TGT) is determined from the PCF kinetics curve. Because PCF is absolutely thrombin dependent (no thrombin-no force), the initial upswing in PCF occurs at the moment of thrombin production. TGT is sensitive to clotting factor deficiencies, clotting factor inhibitors, and the presence of antithrombins, all of which prolong the TGT and are known to be hemophilic states. Treatment of hemophilic states with hemostatic agents shortens the TGT toward normal. TGT has been demonstrated to be shorter and PCF to be increased in coronary artery disease, diabetes mellitus, and several other thrombophilic states. Treatment of thrombophilic states with a variety of heparin and nonheparin anticoagulants prolongs the TGT toward normal. The combination of PCF, CEM, and TGT measured on the same sample may allow rapid assessment of global hemostasis and the response to a variety of procoagulant and anticoagulant medications.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.