Anabolic androgenic steroids (AAS) make up one of the most prevalent classes of performance-enhancing drugs banned by the World Anti-Doping Agency (WADA) due to the competitive advantage they can afford athletes. Mass spectrometry-based methods coupled with chromatographic separations have become the gold standard for AAS analysis because of the superior sensitivity and selectivity provided. However, emerging analytical techniques including ion mobility spectrometry (IMS) have been demonstrated in recent applications as a means to further characterize and identify potential unknowns while simultaneously delivering improved sensitivity by filtering noise. Herein we outline the next crucial steps in bringing IMS to the routine drug testing workflow by combining it with established chromatographic and mass spectrometry methods (i.e., LC−IM−MS) for the detection of AAS in human urine. In addition to robust measurement of collision cross sections which can be used for identification purposes, functional group microtrends provide a structural basis on which to elucidate the structure of future novel anabolic agents. Lastly, the developed workflow is tested by analysis of testosterone in a realistic matrix (human urine) and demonstrates a limit of detection of 524 pg/mL, which surpasses the WADA Minimum Required Performance Levels for anabolic steroids. This work is expected to pave the way toward routine incorporation of IMS into analytical drug testing workflows to augment both qualitative and quantitative measure of performance enhancing drugs in the future.
Steroids are an important class of biomolecules studied for their role in metabolism, development, nutrition, and disease. Although highly sensitive GC- and LC-MS/MS-based methods have been developed for targeted quantitation of known steroid metabolites, emerging techniques including ion mobility (IM) have shown promise in improved analysis and capacity to better identify unknowns in complex biological samples. Herein, we couple LC-IM-MS/MS with structurally selective reactions targeting hydroxyl and carbonyl functional groups to improve IM resolution and structural elucidation. We demonstrate that 1,1-carbonyldiimidazole derivatization of hydroxyl stereoisomer pairs such as testosterone/epitestosterone and androsterone/epiandrosterone results in increased IM resolution with ΔCCS > 15%. Additionally, performing this in parallel with derivatization of the carbonyl group by Girard’s Reagent P resulted in unique products based on relative differences in number of each functional group and C17 alkylation. These changes could be easily deciphered using the combination of retention time, collision cross section, accurate mass, and MS/MS fragmentation pattern. Derivatization by Girard’s Reagent P, which contains a fixed charge quaternary amine, also increased the ionization efficiency and could be explored for its potential benefit to sensitivity. Overall, the combination of these simple and easy derivatization reactions with LC-IM-MS/MS analysis provides a method for improved analysis of known target analytes while also yielding critical structural information that can be used for identification of potential unknowns.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.