The localization of orexin neuropeptides in the lateral hypothalamus has focused interest on their role in ingestion. The orexigenic neurones in the lateral hypothalamus, however, project widely in the brain, and thus the physiological role of orexins is likely to be complex. Here we describe an investigation of the action of orexin A in modulating the arousal state of rats by using a combination of tissue localization and electrophysiological and behavioral techniques. We show that the brain region receiving the densest innervation from orexinergic nerves is the locus coeruleus, a key modulator of attentional state, where application of orexin A increases cell firing of intrinsic noradrenergic neurones. Orexin A increases arousal and locomotor activity and modulates neuroendocrine function. The data suggest that orexin A plays an important role in orchestrating the sleep-wake cycle.Since the discovery of the orexins (1) investigations of their functions have been guided by evidence for their hypothalamic distribution (1, 2), focusing on feeding, energy homeostasis (1, 3), and neurocrine functions (3). Our studies now show the presence of orexin A immunoreactive fibers and varicosities in extrahypothalamic areas, particularly the locus coeruleus, and demonstrate that the functions of orexin A extend beyond the hypothalamus.Orexin A and B are derived from a 130-aa precursor, prepro-orexin, which is encoded by a gene localized to human chromosome 17q21 (1). Prepro-orexin, or preprohypocretin (2), was identified in the rat hypothalamus by directional tag PCR subtractive hybridization (2) and has been shown by Northern blot analysis to be abundant in the brain and detectable at low levels in testes but not in a variety of other tissues (1, 2). Hypocretins had been identified as hypothalamic neuropeptides, but their biological role was not described (2). Nucleotide sequence alignment shows that hypocretins 1 and 2 have sequence in common with orexins A and B, respectively, but additional amino acids are present in both hypocretins. In situ hybridization maps confirm dense prepro-orexin mRNA expression in the hypothalamus (1, 2). Immunocytochemical mapping of orexin A has identified a population of mediumsized neurones within the hypothalamus, median eminence (3), and ventral thalamic nuclei of rat brain (1, 3). This distribution has been confirmed in human tissue (4).Orexin A binds with high affinity to the novel G proteincoupled receptors orexin 1 (OX 1 ) (IC 50 20 nM) and orexin 2 (OX 2 ) (IC 50 38 nM). Calcium mobilization assays in transfected HEK293 cells confirm that orexin A is a potent agonist at both OX 1 (EC 50 30 nM) and OX 2 (EC 50 34 nM) (1). Emerging evidence suggests the existence of an extensive extrahypothalamic projection of orexin-immunoreactive neurones. Peyron et al. (5), in addition to confirming the presence of immunoreactive cell somata within the hypothalamus, reported immunolabeled fibers throughout extrahypothalamic regions, including septal nuclei, substantia nigra, and raphe nucle...
Visceral pain is the most common form of pain produced by disease and is thus of interest in the study of gastrointestinal (GI) complaints such as irritable bowel syndrome, in which sensory signals perceived as GI pain travel in extrinsic afferent neurones with cell bodies in the dorsal root ganglia (DRG). The DRG from which the primary spinal afferent innervation of the mouse descending colon arises are not well defined. This study has combined retrograde labelling and immunohistochemistry to identify and characterize these neurones. Small to medium-sized retrogradely labelled cell bodies were found in the DRG at levels T8-L1 and L6-S1. Calcitonin gene-related peptide (CGRP)- and P2X3-like immunoreactivity (LI) was seen in 81 and 32%, respectively, of retrogradely labelled cells, and 20% bound the Griffonia simplicifolia-derived isolectin IB4. CGRP-LI and IB4 were co-localized in 22% of retrogradely labelled cells, whilst P2X3-LI and IB4 were co-localized in 7% (vs 34% seen in the whole DRG population). Eighty-two per cent of retrogradely labelled cells exhibited vanilloid receptor 1-like immunoreactivity (VR1-LI). These data suggest that mouse colonic spinal primary afferent neurones are mostly peptidergic CGRP-containing, VR1-LI, C fibre afferents. In contrast to the general DRG population, a subset of neurones exist that are P2X3 receptor-LI but do not bind IB4.
Megavoltage x-ray beams exhibit the well-known phenomena of dose buildup within the first few millimeters of the incident phantom surface, or the skin. Results of the surface dose measurements, however, depend vastly on the measurement technique employed. Our goal in this study was to determine a correction procedure in order to obtain an accurate skin dose estimate at the clinically relevant depth based on radiochromic film measurements. To illustrate this correction, we have used as a reference point a depth of 70 micron. We used the new GAFCHROMIC dosimetry films (HS, XR-T, and EBT) that have effective points of measurement at depths slightly larger than 70 micron. In addition to films, we also used an Attix parallel-plate chamber and a home-built extrapolation chamber to cover tissue-equivalent depths in the range from 4 micron to 1 mm of water-equivalent depth. Our measurements suggest that within the first millimeter of the skin region, the PDD for a 6 MV photon beam and field size of 10 x 10 cm2 increases from 14% to 43%. For the three GAFCHROMIC dosimetry film models, the 6 MV beam entrance skin dose measurement corrections due to their effective point of measurement are as follows: 15% for the EBT, 15% for the HS, and 16% for the XR-T model GAFCHROMIC films. The correction factors for the exit skin dose due to the build-down region are negligible. There is a small field size dependence for the entrance skin dose correction factor when using the EBT GAFCHROMIC film model. Finally, a procedure that uses EBT model GAFCHROMIC film for an accurate measurement of the skin dose in a parallel-opposed pair 6 MV photon beam arrangement is described.
The purpose of this retrospective study was to examine liver tissue from patients with cholestatic disease for the presence of group C rotavirus RNA. The reverse transcriptase-polymerase chain reaction (PCR) for genes 5 and 6 was used, and the PCR products were subjected to liquid hybridization with a 32P-labeled probe. A second amplification with nested primers was also used. Samples from 32 subjects (20 with biliary atresia or choledochal cyst and 12 controls) were tested. Ten of 20 biliary atresia patients were positive for group C rotavirus RNA; no controls were positive (P < .003). Three of the positive patients were positive for both genes 5 and 6. Six of the 10 had > 1 sample that was positive. These data suggest a possible relationship between group C rotavirus and extrahepatic biliary atresia in the 10 patients in whom virus RNA was detected.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.