Summary Background C-kit+ lineage− cardiac stem cells (CSCs) improve postinfarction left ventricular (LV) dysfunction in animals; however, their efficacy in humans is unknown. Methods In February 2009, we began SCIPIO (Stem Cell Infusion in Patients with Ischemic CardiOmyopathy), a Phase I, randomized, open-label trial of CSCs in patients with postinfarction LV dysfunction (ejection fraction [EF] ≤ 40%) who underwent coronary bypass surgery. Autologous CSCs were isolated from the right atrial appendage and re-infused intracoronarily 4 ± 1 months after surgery; controls received no treatment. In Stage A, 9 treated and 4 control patients were consecutively enrolled to assess the feasibility and short-term safety of CSCs. Then, in Stage B, patients were randomized to the treated or control arm in a 2:3 ratio using a block randomization scheme and a block size of five. Primary (safety) and secondary (efficacy) endpoints were assessed at serial times after enrollment. Findings Autologous CSCs were successfully isolated and expanded in 80 out of 81 patients. In 16 treated patients, no CSC-related adverse effects have been observed. LVEF (3D echocardiography) increased from 30.3 ± 1.9% before CSC infusion to 38.5 ± 2.8% at 4 months after infusion, (P=0.001, n=14). This was associated with an improvement in regional wall motion score index (echocardiography) (1.91 ± 0.09 vs. 1.73 ± 0.09, P=0.005), NYHA functional class (2.19 ± 0.16 vs. 1.63 ± 0.16, P=0.003), and quality of life (MLHFQ score, 46.44 ± 5.22 vs. 26.69 ± 4.92, P<0.0001). In contrast, in 7 control patients, none of these variables changed appreciably during the corresponding time-interval. Importantly, the salubrious effects of CSCs were even more pronounced at 1 year (e.g., LVEF increased by 12.3 ± 2.1% vs. pre-CSCs, P=0.0007, n=8), suggesting that CSCs continue to improve LV function beyond the first 4 months. In the 7 treated patients in whom cardiac magnetic resonance (cMR) imaging could be performed, infarct size decreased by 7.8 ± 1.7 g (23.8%) at 4 months (P=0.004) and 9.8 ± 3.5 g (30.3%) at 1 year (P=0.04). Interpretation These initial results in humans are very encouraging, and suggest that infusion of autologous CSCs is effective in improving LV systolic function and reducing infarct size in patients with heart failure.
BACKGROUND It is unknown whether warfarin or aspirin therapy is superior for patients with heart failure who are in sinus rhythm. METHODS We designed this trial to determine whether warfarin (with a target international normalized ratio of 2.0 to 3.5) or aspirin (at a dose of 325 mg per day) is a better treatment for patients in sinus rhythm who have a reduced left ventricular ejection fraction (LVEF). We followed 2305 patients for up to 6 years (mean [±SD], 3.5±1.8). The primary outcome was the time to the first event in a composite end point of ischemic stroke, intracerebral hemorrhage, or death from any cause. RESULTS The rates of the primary outcome were 7.47 events per 100 patient-years in the warfarin group and 7.93 in the aspirin group (hazard ratio with warfarin, 0.93; 95% confidence interval [CI], 0.79 to 1.10; P = 0.40). Thus, there was no significant overall difference between the two treatments. In a time-varying analysis, the hazard ratio changed over time, slightly favoring warfarin over aspirin by the fourth year of follow-up, but this finding was only marginally significant (P = 0.046). Warfarin, as compared with aspirin, was associated with a significant reduction in the rate of ischemic stroke throughout the follow-up period (0.72 events per 100 patient-years vs. 1.36 per 100 patient-years; hazard ratio, 0.52; 95% CI, 0.33 to 0.82; P = 0.005). The rate of major hemorrhage was 1.78 events per 100 patient-years in the warfarin group as compared with 0.87 in the aspirin group (P<0.001). The rates of intracerebral and intracranial hemorrhage did not differ significantly between the two treatment groups (0.27 events per 100 patient-years with warfarin and 0.22 with aspirin, P = 0.82). CONCLUSIONS Among patients with reduced LVEF who were in sinus rhythm, there was no significant overall difference in the primary outcome between treatment with warfarin and treatment with aspirin. A reduced risk of ischemic stroke with warfarin was offset by an increased risk of major hemorrhage. The choice between warfarin and aspirin should be individualized.
The use of transesophageal echocardiography to guide the management of atrial fibrillation may be considered a clinically effective alternative strategy to conventional therapy for patients in whom elective cardioversion is planned.
Background SCIPIO is a first-in-human, phase 1, randomized, open-label trial of autologous c-kit+ cardiac stem cells (CSCs) in patients with heart failure of ischemic etiology undergoing coronary artery bypass grafting (CABG). Here, we report the surgical aspects and interim cardiac magnetic resonance (CMR) results. Methods and Results A total of 33 patients (20 CSC-treated and 13 controls) met final eligibility criteria and were enrolled in SCIPIO. CSCs were isolated from the right atrial appendage harvested and processed during surgery. Harvesting did not affect cardiopulmonary bypass, cross-clamp, or surgical times. In CSC-treated patients, CMR showed a marked increase in both LVEF (from 27.5 ± 1.6% to 35.1 ± 2.4 % [P=0.004, n=8] and 41.2 ± 4.5 % [P=0.013, n=5] at 4 and 12 months after CSC infusion, respectively) and regional EF in the CSC-infused territory. Infarct size (late gadolinium enhancement) decreased after CSC infusion (by manual delineation: -6.9 ± 1.5 g [-22.7%] at 4 months [P=0.002, n=9] and -9.8 ± 3.5 g [-30.2%] at 12 months [P=0.039, n=6],). LV non-viable mass decreased even more (-11.9 ± 2.5 g [-49.7%] at 4 months [P=0.001] and -14.7 ± 3.9 g [-58.6%] at 12 months [P=0.013]), while LV viable mass increased (+11.6 ± 5.1 g at 4 months after CSC infusion [P=0.055] and +31.5 ± 11.0 g at 12 months [P=0.035]). Conclusions Isolation of CSCs from cardiac tissue obtained in the operating room is feasible and does not alter practices during CABG surgery. CMR shows that CSC infusion produces a striking improvement in both global and regional LV function, a reduction in infarct size, and an increase in viable tissue, which persist at least 1 year and are consistent with cardiac regeneration. Clinical Trial Registration This study is registered with clinicaltrials.gov, trial number NCT00474461.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.