Notch is the receptor in a signalling pathway that operates in a diverse spectrum of developmental processes. Its ligands (e.g. Serrate) are transmembrane proteins whose signalling competence is regulated by the endocytosis‐promoting E3 ubiquitin ligases, Mindbomb1 and Neuralized. The ligands also inhibit Notch present in the same cell (cis‐inhibition). Here, we identify two conserved motifs in the intracellular domain of Serrate that are required for efficient endocytosis. The first, a dileucine motif, is dispensable for trans‐activation and cis‐inhibition despite the endocytic defect, demonstrating that signalling can be separated from bulk endocytosis. The second, a novel motif, is necessary for interactions with Mindbomb1/Neuralized and is strictly required for Serrate to trans‐activate and internalise efficiently but not for it to inhibit Notch signalling. Cis‐inhibition is compromised when an ER retention signal is added to Serrate, or when the levels of Neuralized are increased, and together these data indicate that cis‐inhibitory interactions occur at the cell surface. The balance of ubiquitinated/unubiquitinated ligand will thus affect the signalling capacity of the cell at several levels.
In Drosophila, the humoral response characterised by the synthesis of antimicrobial peptides (AMPs) in the fat body (the equivalent of the mammalian liver) and the cellular response mediated by haemocytes (blood cells) engaged in phagocytosis represent two major reactions that counter pathogens. Although considerable analysis has permitted the elucidation of mechanisms pertaining to the two responses individually, the mechanism of their coordination has been unclear. To characterise the signals with which infection might be communicated between blood cells and fat body, we ablated circulating haemocytes and defined the parameters of AMP gene activation in larvae. We found that targeted ablation of blood cells influenced the levels of AMP gene expression in the fat body following both septic injury and oral infection. Expression of the AMP gene drosomycin (a Toll target) was blocked when expression of the Toll ligand Spätzle was knocked down in haemocytes. These results show that in larvae, integration of the two responses in a systemic reaction depend on the production of a cytokine (spz), a process that strongly parallels the mammalian immune response.
SUMMARYCandida albicans systemic dissemination in immunocompromised patients is thought to develop from initial gastrointestinal (GI) colonisation. It is unclear what components of the innate immune system are necessary for preventing C. albicans dissemination from the GI tract, but studies in mice have indicated that both neutropenia and GI mucosal damage are crucial for allowing widespread invasive C. albicans disease. Mouse models, however, provide limited applicability to genome-wide screens for pathogen or host factors – factors that might influence systemic dissemination following GI colonisation. For this reason we developed a Drosophila model to study intestinal infection by Candida. We found that commensal flora aided host survival following GI infection. Candida provoked extensive JNK-mediated death of gut cells and induced antimicrobial peptide expression in the fat body. From the side of the host, nitric oxide and blood cells influenced systemic antimicrobial responses. The secretion of SAP4 and SAP6 (secreted aspartyl proteases) from Candida was also essential for activating systemic Toll-dependent immunity.
The cell wall of Gram-positive bacteria is a complex network of surface proteins, capsular polysaccharides and wall teichoic acids (WTA) covalently linked to Peptidoglycan (PG). The absence of WTA has been associated with a reduced pathogenicity of Staphylococcus aureus (S. aureus). Here, we assessed whether this was due to increased detection of PG, an important target of innate immune receptors. Antibiotic-mediated or genetic inhibition of WTA production in S. aureus led to increased binding of the non-lytic PG Recognition Protein-SA (PGRP-SA), and this was associated with a reduction in host susceptibility to infection. Moreover, PGRP-SD, another innate sensor required to control wild type S. aureus infection, became redundant. Our data imply that by using WTA to limit access of innate immune receptors to PG, under-detected bacteria are able to establish an infection and ultimately overwhelm the host. We propose that different PGRPs work in concert to counter this strategy.
SUMMARYCandida spp. are opportunistic pathogens in humans, and their systemic infections display upwards of 30% mortality in immunocompromised patients. Current mammalian model systems have certain disadvantages in that obtaining results is time consuming owing to the relatively long life spans and these results have low statistical resolution because sample sizes are usually small. We have therefore evaluated the potential of Drosophila melanogaster as an additional model system with which to dissect the host-pathogen interactions that occur during Candida albicans systemic infection. To do this, we monitored the survival of wild-type flies infected with various C. albicans clinical isolates that were previously ranked for murine virulence. From our lifetime data we computed two metrics of virulence for each isolate. These correlated significantly with murine survival, and were also used to group the isolates, and this grouping made relevant predictions regarding their murine virulence. Notably, differences in virulence were not predictably resolvable using immune-deficient spz−/− flies, suggesting that Toll signalling might actually be required to predictably differentiate virulence. Our analysis reveals wild-type D. melanogaster as a sensitive and relevant model system; one that offers immense genetic tractability (having an extensive RNA interference library that enables tissue-specific gene silencing), and that is easy to manipulate and culture. Undoubtedly, it will prove to be a valuable addition to the model systems currently used to study C. albicans infection.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.