For certain structure types and damage sizes, guided waves offer some distinct advantages for damage detection, such as range and sizing potential, greater sensitivity and cost effectiveness. Guided waves exhibit multiple modes; for Lamb waves there are two types; symmetric and antisymmetric. In damage detection regimes, information and features of individual modes, which propagate from a single source, are useful for localisation and sizing of damage. This facet leads to the motivation to decompose a single signal into the individual modes that are received in the wave-packet. Decomposition of wave modes is possible in full-field Lamb wave data from a forward-backward, two-dimensional Fourier transform method that involves dispersion curve information; though this method cannot be applied directly to signals at a single location. By using this method, the expected nominal waves can be determined for a given propagation distance; i.e. the individual wave modes expected to be present regardless of damage. In the presence of damage, residual signals will be present which contain information on the damage. In this paper, a Bayesian linear regression technique is used to decompose single multi-mode signals into their individual wave modes, which is then used to determine any residual signals. This decomposition is made by determining the expected shape and size of individual mode signals from the full-field decomposed waves. The information inferred by this method, both before and after the wave has propagated through damage, is studied.
Guided waves are gaining increased interest in SHM, thanks to some distinct advantages. For guided-wave-based localisation strategies, information on the group velocity is required; therefore, determination of accurate dispersion curves is invaluable. However, for complex materials, the wave speed is dependent on the propagation angle. From experimental observations of dispersion curves, measured using a two-dimensional Fourier transform, a system identification procedure can be used to determine the estimated value and distribution for the governing material properties. Markov-chain Monte Carlo (MCMC) sampling can provide a way of simulating samples from these distributions, which would require solving dispersion curves many times. By using a novel Legendre polynomial expansion approach, the computational cost of dispersion curve solutions is greatly reduced, making the MCMC procedure a more practical approach In this work, a scanning laser Doppler vibrometer is used to record the propagation of Lamb waves in a carbon-fibre-composite plates, and points on the dispersion curve are extracted. These observations are then fed into the MCMC material identification procedure to provide a Bayesian approach to determining properties governing Lamb wave propagation at various angles in the plate. The distribution of parameters at each angle is discussed, including the inferred confidence in the predicted parameters.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.