Scientific Significance StatementMetabolic stoichiometry predicts that dissolved oxygen (O2) and carbon dioxide (CO2) in aquatic ecosystems should covary inversely; however, field observations often diverge from theoretical expectations. Here, we propose a suite of metrics describing this O2 and CO2 decoupling and introduce a conceptual framework for interpreting these metrics within aquatic ecosystems. Within this framework, we interpret cross‐system patterns of high‐frequency O2 and CO2 measurements in 11 northern lakes and extract emergent insights into the metabolic behavior and the simultaneous roles of chemical and physical forcing in shaping ecosystem processes. This approach leverages the power of high‐frequency paired O2–CO2 measurements, and yields a novel, integrative aquatic system typology which can also be applicable more broadly to streams and rivers, wetlands and marine systems.
Abstract. Strong winds may uproot and break trees and represent a major natural disturbance for European forests. Wind disturbances have intensified over the last decades globally and are expected to further rise in view of the effects of climate change. Despite the importance of such natural disturbances, there are currently no spatially explicit databases of wind-related impact at a pan-European scale. Here, we present a new database of wind disturbances in European forests (FORWIND). FORWIND is comprised of more than 80 000 spatially delineated areas in Europe that were disturbed by wind in the period 2000–2018 and describes them in a harmonized and consistent geographical vector format. The database includes all major windstorms that occurred over the observational period (e.g. Gudrun, Kyrill, Klaus, Xynthia and Vaia) and represents approximately 30 % of the reported damaging wind events in Europe. Correlation analyses between the areas in FORWIND and land cover changes retrieved from the Landsat-based Global Forest Change dataset and the MODIS Global Disturbance Index corroborate the robustness of FORWIND. Spearman rank coefficients range between 0.27 and 0.48 (p value < 0.05). When recorded forest areas are rescaled based on their damage degree, correlation increases to 0.54. Wind-damaged growing stock volumes reported in national inventories (FORESTORM dataset) are generally higher than analogous metrics provided by FORWIND in combination with satellite-based biomass and country-scale statistics of growing stock volume. The potential of FORWIND is explored for a range of challenging topics and scientific fields, including scaling relations of wind damage, forest vulnerability modelling, remote sensing monitoring of forest disturbance, representation of uprooting and breakage of trees in large-scale land surface models, and hydrogeological risks following wind damage. Overall, FORWIND represents an essential and open-access spatial source that can be used to improve the understanding, detection and prediction of wind disturbances and the consequent impacts on forest ecosystems and the land–atmosphere system. Data sharing is encouraged in order to continuously update and improve FORWIND. The dataset is available at https://doi.org/10.6084/m9.figshare.9555008 (Forzieri et al., 2019).
Estimating air-water gas transfer velocities (k) is integral to understand biogeochemical and ecological processes in aquatic systems. In lakes, k is commonly predicted using wind-based empirical models, however, their predictive performance under conditions that differ from their original calibration remains largely unassessed. Here, we collected 2222 published k estimates derived from various methods in 46 globally distributed lakes to (1) evaluate the predictions of a selection of six available wind-speed based k models for lakes and (2) explore and develop new empirical models to predict k over global lakes. We found that selected k models generally performed poorly in predicting k in lakes. Model predictions were more accurate than simply assuming a mean k in only 2-39% of all lakes, however, we could not identify with confidence the specific conditions in which some models outperformed others. We developed new wind-based models in which additional variables describing the spatial coverage of k estimates and the lake size and shape had a significant effect on the wind speed-k relationship. Although these new models did not fit the global dataset significantly better than previous k models, they generate overall less biased predictions for global lakes. We further provide explicit estimates of prediction errors that integrate methodological and lake-specific uncertainties. Our results highlight the potential limits when using wind-based models to predict k across lakes and urge scientists to properly account for prediction errors, or measure k directly in the field whenever possible. Keywords Air-water gas exchange • Model assessment • Lake gas flux • Wind speed • k 600 • Reaeration Aquatic Sciences
Cryogenic soil activity caused by differential soil movements during freeze-thaw cycles is of fundamental importance for Arctic ecosystem functioning, but its response to climate warming is uncertain. Eight proxies of cryogenic soil activity (including measurements of soil surface motion, vegetation and grey values of aerial photographs) were examined at eight study sites where non-sorted patterned ground spans an elevation gradient (400-1150 m asl) and a precipitation gradient (300-1000 mm yr -1 ) near Abisko, northern Sweden. Six proxies were significantly correlated with each other (mean |r| = 0.5). Soil surface motion increased by three to five times along the precipitation gradient and was two to four times greater at intermediate elevations than at low and high elevations, a pattern reflected by vegetation assemblages. The results suggest that inferences about how cryogenic soil activity changes with climate are independent of the choice of the proxy, although some proxies should be applied carefully. Four preferred proxies indicate that cryogenic soil activity may respond differently to climate warming along the elevation gradient and could be greatly modified by precipitation. This underlines the strong but spatially complex response of cryogenic processes to climate change in the Arctic.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.