BackgroundInvestigations on pulmonary macrophages (MΦ) mostly focus on alveolar MΦ (AM) as a well-defined cell population. Characteristics of MΦ in the interstitium, referred to as lung interstitial MΦ (IM), are rather ill-defined. In this study we therefore aimed to elucidate differences between AM and IM obtained from human lung tissue.MethodsHuman AM and IM were isolated from human non-tumor lung tissue from patients undergoing lung resection. Cell morphology was visualized using either light, electron or confocal microscopy. Phagocytic activity was analyzed by flow cytometry as well as confocal microscopy. Surface marker expression was measured by flow cytometry. Toll-like receptor (TLR) expression patterns as well as cytokine expression upon TLR4 or TLR9 stimulation were assessed by real time RT-PCR and cytokine protein production was measured using a fluorescent bead-based immunoassay.ResultsIM were found to be smaller and morphologically more heterogeneous than AM, whereas phagocytic activity was similar in both cell types. HLA-DR expression was markedly higher in IM compared to AM. Although analysis of TLR expression profiles revealed no differences between the two cell populations, AM and IM clearly varied in cell reaction upon activation. Both MΦ populations were markedly activated by LPS as well as DNA isolated from attenuated mycobacterial strains (M. bovis H37Ra and BCG). Whereas AM expressed higher amounts of inflammatory cytokines upon activation, IM were more efficient in producing immunoregulatory cytokines, such as IL10, IL1ra, and IL6.ConclusionAM appear to be more effective as a non-specific first line of defence against inhaled pathogens, whereas IM show a more pronounced regulatory function. These dissimilarities should be taken into consideration in future studies on the role of human lung MΦ in the inflammatory response.
Up to 25,000 people die each year from resistant infections in Europe alone, with increasing incidence. It is estimated that a continued rise in bacterial resistance by 2050 would lead up to 10 million annual deaths worldwide, exceeding the incidence of cancer deaths. Although the design of new antibiotics is still one way to tackle the problem, pharmaceutical companies investigate far less into new drugs than 30 years ago. Incorporation of antibiotics into nanoparticle drug carriers ("nanoantibiotics") is currently investigated as a promising strategy to make existing antibiotics regain antimicrobial strength and overcome certain types of microbial drug resistance. Many of these synthetic systems enhance the antimicrobial effect of drugs by protecting antibiotics from degradation and reducing their side effects. Nevertheless, they often cannot selectively target pathogenic bacteria and -due to their synthetic origin -may induce side-effects themselves.In this work, we present the characterisation of naturally derived outer membrane vesicles (OMVs) as biocompatible and inherently antibiotic drug carriers. We isolated OMVs from two representative strains of myxobacteria, Cystobacter velatus Cbv34 and Sorangiineae species strain SBSr073, a bacterial order with the ability of lysing other bacterial strains and currently investigated as sources of new secondary metabolites. We investigated the myxobacterias' inherent antibacterial properties after isolation by differential centrifugation and purification by size-exclusion chromatography. OMVs have an average size range of 145-194 nm. We characterised their morphology by electron cryomicroscopy and found that OMVs are biocompatible with epithelial cells and differentiated macrophages. They showed a low endotoxin activity comparable to those of control samples, indicating a low acute inflammatory potential. In addition, OMVs showed inherent stability under different storage conditions, including 4 °C, -20 °C, -80 °C and freeze-drying. OMV uptake in Gram-negative model bacterium Escherichia coli (E. coli) showed similar to better incorporation than liposome controls, indicating the OMVs may interact with model bacteria via membrane fusion.Bacterial uptake correlated with antimicrobial activity of OMVs as measured by growth inhibition of E. coli. OMVs from Cbv34 inhibited growth of E. coli to a comparable extent as the clinically established antibiotic gentamicin. Liquid-chromatography coupled mass spectrometry analyses revealed the presence of cystobactamids in OMVs, inhibitors of bacterial topoisomerase currently studied to treat different Gram-negative and Gram-positive pathogens. This work, may serve as an important basis for further evaluation of OMVs derived from myxobacteria as novel therapeutic delivery systems against bacterial infections.
Polyhydroxybutyrate (PHB) is a polymer of great interest as a substitute for conventional plastics, which are becoming an enormous environmental problem. PHB can be produced directly from CO2 in photoautotrophic cyanobacteria. The model cyanobacterium Synechocystis sp. PCC 6803 produces PHB under conditions of nitrogen starvation. However, it is so far unclear which metabolic pathways provide the precursor molecules for PHB synthesis during nitrogen starvation. In this study, we investigated if PHB could be derived from the main intracellular carbon pool, glycogen. A mutant of the major glycogen phosphorylase, GlgP2 (slr1367 product), was almost completely impaired in PHB synthesis. Conversely, in the absence of glycogen synthase GlgA1 (sll0945 product), cells not only produced less PHB, but were also impaired in acclimation to nitrogen depletion. To analyze the role of the various carbon catabolic pathways (EMP, ED and OPP pathways) for PHB production, mutants of key enzymes of these pathways were analyzed, showing different impact on PHB synthesis. Together, this study clearly indicates that PHB in glycogen-producing Synechocystis sp. PCC 6803 cells is produced from this carbon-pool during nitrogen starvation periods. This knowledge can be used for metabolic engineering to get closer to the overall goal of a sustainable, carbon-neutral bioplastic production.
Extracellular vesicles are membranous structures shed by almost every living cell. Bacterial gram-negative outer membrane vesicles (OMVs) and gram-positive membrane vesicles (MVs) play important roles in adaptation to the surrounding environment, cellular components' exchange, transfer of antigens and virulence factors, and infection propagation. Streptococcus pneumoniae is considered one of the priority pathogens, with a global health impact due to the increase in infection burden and growing antibiotic resistance. We isolated MVs produced from the S. pneumoniae reference strain (R6) and purified them via size exclusion chromatography (SEC) to remove soluble protein impurities. We characterized the isolated MVs by nanoparticle tracking analysis (NTA) and measured their particle size distribution and concentration. Isolated MVs showed a mean particle size range of 130-160 nm and a particle yield of around 10 12 particles per milliliter. Cryogenic transmission electron microscopy (cryo-TEM) images revealed a very heterogeneous nature of isolated MVs with a broad size range and various morphologies, arrangements, and contents. We incubated streptococcal MVs with several mammalian somatic cells, namely, human lung epithelial A549 and human keratinocytes HaCaT cell lines, and immune cells including differentiated macrophage-like dTHP-1 and murine dendritic DC2.4 cell lines. All cell lines displayed excellent viability profile and negligible cytotoxicity after 24-h incubation with MVs at concentrations reaching 10 6 MVs per cell (somatic cells) and 10 5 MVs per cell (immune cells). We evaluated the uptake of fluorescently labeled MVs into these four cell lines, using flow cytometry and confocal microscopy. Dendritic cells demonstrated prompt uptake after 30-min incubation, whereas other cell lines showed increasing uptake after 2-h incubation and almost complete colocalization/internalization of MVs after only 4-h incubation. We assessed the influence of streptococcal MVs on antigen-presenting cells, e.g., dendritic cells, using enzyme-linked immunosorbent assay (ELISA) and observed enhanced release of tumor necrosis factor (TNF)-α, a slight increase of interleukin (IL)-10 Mehanny et al. Streptococcal Membrane Vesicles secretion, and no detectable effect on IL-12. Our study provides a better understanding of gram-positive streptococcal MVs and shows their potential to elicit a protective immune response. Therefore, they could offer an innovative avenue for safe and effective cell-free vaccination against pneumococcal infections.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.