For decades pulse oximeters designed for use on the head, hands, or feet have provided invaluable estimates of oxygen saturation to medical personal attending to combat casualties. However, traditional placement sites are not ideal for the relatively new paradigm of continuous battlefield telemonitoring. To assess the feasibility of oximetry on nontraditional body sites, 42 healthy volunteers were enrolled, consented, and underwent an industry standard induced-hypoxia study. During the study volunteers used prototype wearable oximeters, designed for the torso, arms, and legs. Subsets (size n) of the volunteers had the wearables placed at the following body sites, and achieved accuracies (A, root-mean-square difference) of the following: calf 1.7% (n = 26); bicep 3.1% (n = 12); forearm 3.4% (n = 11); pectoral 2.9% (n = 42); sternum 2.9% (n = 13). In keeping with regulatory guidance calibrations with an A of less than 3.5% are acceptable for potential future development. Additionally, a new method was developed to enable accurate reporting of respiration rate from the pectoral oximeter, A of 1.1 breaths per minute (n = 10). This study demonstrates the feasibility of monitoring oxygen saturation and respiration rate from nontraditional sites via a wearable pulse oximeter.
AFM tips terminated with PMMA colloids are used to pattern molecules in both serial and parallel modes by allowing the polymer on the tip to swell under different humidity conditions. This extension of the dip-pen nanolithography technique provides an easy methodology to place inks on different substrates without the need to perform specialized tip alignment.
Despite abundant research conducted on cancer biomarker discovery and validation, to date, less than two-dozen biomarkers have been approved by the FDA for clinical use. One main reason is attributed to inadvertent use of low quality biospecimens in biomarker research. Most proteinaceous biomarkers are extremely susceptible to pre-analytical factors such as collection, processing, and storage. For example, cryogenic storage imposes very harsh chemical, physical, and mechanical stresses on biospecimens, significantly compromising sample quality. In this communication, we report the development of an electrospun lyoprotectant matrix and isothermal vitrification methodology for non-cryogenic stabilization and storage of liquid biospecimens. The lyoprotectant matrix was mainly composed of trehalose and dextran (and various low concentration excipients targeting different mechanisms of damage), and it was engineered to minimize heterogeneity during vitrification. The technology was validated using five biomarkers; LDH, CRP, PSA, MMP-7, and C3a. Complete recovery of LDH, CRP, and PSA levels was achieved post-rehydration while more than 90% recovery was accomplished for MMP-7 and C3a, showing promise for isothermal vitrification as a safe, efficient, and low-cost alternative to cryogenic storage.Cancer is one of the leading causes of mortality, accounting for approximately 23% of all deaths in the U.S. each year 1 . Early detection and continuous monitoring for recurrence are essential for a positive prognosis, as it is at its initial stages that the disease is most responsive to therapeutic intervention. Early detection focuses on diagnosing the disease before clinical symptoms arise; for example, by detecting the presence of certain cancer biomarkers found in bodily fluids such as the blood 2,3 . Therefore, studies focusing on discovery of highly sensitive and specific cancer biomarkers have become increasingly prevalent [3][4][5] . In spite of the advances in fast and sensitive analytical detection methodology and the vast amount of research conducted evaluating thousands of molecular signatures as potential biomarkers for cancer (detailed in more than 150,000 reports published to date), less than two dozen biomolecules have currently been approved for clinical use by the Food and Drug Administration (FDA) 6,7 . An even smaller number is found in the blood, which is home to more than 10,000 potential biomarkers 8,9 . One of the main reasons for the inefficient and slow progress is the poor informational quality of the collected human biospecimens (tissue samples, bodily fluids, etc.) used in biomarker detection and validation studies. A significant fraction of the collected biospecimens is known to be compromised due to sub-optimal handling and storage conditions 10,11 . Biomarker development is composed of a series of phases including discovery, verification, and clinical validation, which require large numbers of high quality biospecimens 12 . For this purpose, millions of "archival" biospecimens are continuously ...
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.