In this paper we use eQTL mapping to identify associations between gene dysregulation and single nucleotide polymorphism (SNP) genotypes in glioblastoma multiforme (GBM). A set of 532,954 SNPs was evaluated as predictors of the expression levels of 22,279 expression probes. We identified SNPs associated with fold change in expression level rather than raw expression levels in the tumor. Following adjustment for false discovery rate, the complete set of probes yielded 9257 significant associations (p<0.05). We found 18 eQTLs that were missense mutations. Many of the eQTLs in the non-coding regions of a gene, or linked to nearby genes, had large numbers of significant associations (e.g. 321 for RNASE3, 101 for BNC2). Functional enrichment analysis revealed that the expression probes in significant associations were involved in signal transduction, transcription regulation, membrane function, and cell cycle regulation. These results suggest several loci that may serve as hubs in gene regulatory pathways associated with GBM.
Determining which mutations drive tumor progression is a defining question in cancer genomics. We analyzed sequence evolution in Glioblastoma multiforme (GBM) by computing the number of parallel mutations and by estimating ω=dN/dS, a measure of the strength and direction of selection. The ω values of almost all 7617 mutated genes in GBM are much higher than in germline genes. We identified only 21 genes under significant positive selection in GBM, as well as 29 genes under significant purifying selection, including several zinc finger proteins. Therefore, most of the high ω values in the GBM genome are due to weaker purifying selection rather than positive selection. We also found multiple recurrent mutations in GBM, several of which are associated with patient survival time. Our results suggest that convergence and neutral evolution play a significant role in GBM, and that sites with recurrent mutations can serve as molecular diagnostics of the clinical course of GBM tumors.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.