[1] Specific discharge variations within a mesoscale catchment were studied on the basis of three synoptic sampling campaigns. These were conducted during stable flow conditions within the Krycklan catchment study area in northern Sweden. During each campaign, about 80 individual locations were measured for discharge draining from catchment areas ranging between 0.12 and 67 km 2 . These discharge samplings allowed for the comparison between years within a given season (September 2005 versus September 2008 and between seasons within a given year (May 2008 versus September 2008) of specific discharge across this boreal landscape. There was considerable variability in specific discharge across this landscape. The ratio of the interquartile range (IQR) defined as the difference between the 75th and 25th percentiles of the specific discharges to the median of the specific discharges ranged from 37% to 43%. Factor analysis was used to explore potential relations between landscape characteristics and the specific discharge observed for 55 of the individual locations that were measured in all three synoptic sampling campaigns. Percentage wet area (i.e., wetlands, mires, and lakes) and elevation were found to be directly related to the specific discharge during the drier September 2008 sampling while potential annual evaporation was found to be inversely related. There was less of a relationship determined during the wetter post spring flood May 2008 sampling and the late summer rewetted September 2005 sampling. These results indicate the ability of forests to "dry out" parts of the catchment over the summer months while wetlands "keep wet" other parts. To demonstrate the biogeochemical implications of such spatiotemporal variations in specific discharge, we estimate dissolved organic carbon (DOC) exports with available data for the May 2008 and September 2008 samplings using both the spatially variable observed specific discharges and the spatially constant catchment average values. The average absolute difference in DOC export for the various subcatchments between using a variable and using a constant specific discharge was 28% for the May 2008 sampling and 20% for the September 2008 sampling.
Accurate stream discharge measurements are important for many hydrological studies. In remote locations, however, it is often difficult to obtain stream flow information because of the difficulty in making the discharge measurements necessary to define stage‐discharge relationships (rating curves). This study investigates the feasibility of defining rating curves by using a fluid mechanics‐based model constrained with topographic data from an airborne LiDAR scanning. The study was carried out for an 8m‐wide channel in the boreal landscape of northern Sweden. LiDAR data were used to define channel geometry above a low flow water surface along the 90‐m surveyed reach. The channel topography below the water surface was estimated using the simple assumption of a flat streambed. The roughness for the modelled reach was back calculated from a single measurment of discharge. The topographic and roughness information was then used to model a rating curve. To isolate the potential influence of the flat bed assumption, a ‘hybrid model’ rating curve was developed on the basis of data combined from the LiDAR scan and a detailed ground survey. Whereas this hybrid model rating curve was in agreement with the direct measurements of discharge, the LiDAR model rating curve was equally in agreement with the medium and high flow measurements based on confidence intervals calculated from the direct measurements. The discrepancy between the LiDAR model rating curve and the low flow measurements was likely due to reduced roughness associated with unresolved submerged bed topography. Scanning during periods of low flow can help minimize this deficiency. These results suggest that combined ground surveys and LiDAR scans or multifrequency LiDAR scans that see ‘below’ the water surface (bathymetric LiDAR) could be useful in generating data needed to run such a fluid mechanics‐based model. This opens a realm of possibility to remotely sense and monitor stream flows in channels in remote locations. Copyright © 2012 John Wiley & Sons, Ltd.
This pilot study explores the potential of using low-resolution (0.2 points/m 2 ) airborne laser scanning (ALS)-derived elevation data to model stream rating curves. Rating curves, which allow the functional translation of stream water depth into discharge, making them integral to water resource monitoring efforts, were modeled using a physics-based approach that captures basic geometric measurements to establish flow resistance due to implicit channel roughness. We tested synthetically thinned high-resolution (more than 2 points/m 2 ) ALS data as a proxy for low-resolution data at a point density equivalent to that obtained within most national-scale ALS strategies. Our results show that the errors incurred due to the effect of low-resolution versus high-resolution ALS data were less than OPEN ACCESSWater 2015, 7 1325 those due to flow measurement and empirical rating curve fitting uncertainties. As such, although there likely are scale and technical limitations to consider, it is theoretically possible to generate rating curves in a river network from ALS data of the resolution anticipated within national-scale ALS schemes (at least for rivers with relatively simple geometries). This is promising, since generating rating curves from ALS scans would greatly enhance our ability to monitor streamflow by simplifying the overall effort required.
This brief pilot study implements a camera‐based laser scanning system that potentially offers a viable, cost‐effective alternative to traditional terrestrial laser scanning (TLS) and LiDAR equipment. We adapted a low‐cost laser ranging system (SICK LSM111) to acquire area scans of the channel and bed for a temporarily diverted stream. The 5 m × 2 m study area was scanned at a 4 mm point spacing which resulted in a point cloud density of 5,600 points/m2. A local maxima search algorithm was applied to the point cloud and a grain size distribution of the stream bed was extracted. The 84th and 90th percentiles of this distribution, which are commonly used to characterize channel roughness, were 90 mm and 109 mm, respectively. Our example shows the system can resolve both large‐scale geometry (e.g., bed slope and channel width) and small‐scale roughness elements (e.g., grain sizes between about 30 and 255 mm) in an exposed stream channel thereby providing a resolution adequate for the estimation of ecohydraulic roughness parameters such as Manning's n. While more work is necessary to refine our specific field‐deployable system's design, these initial results are promising in particular for those working on a limited or fixed budget. This opens up a realm of laser scanning applications and monitoring strategies for water resources that may not have been possible previously due to cost limitations associated with traditional TLS systems.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.