Children born with anatomic or functional "single ventricle" must progress through two or more major operations to sustain life. This management sequence culminates in the total cavopulmonary connection, or "Fontan" operation. A consequence of the "Fontan circulation", however, is elevated central venous pressure and inadequate ventricular preload, which contribute to continued morbidity. We propose a solution to these problems by increasing pulmonary blood flow using an "injection jet" (IJS) in which the source of blood flow and energy is the ventricle itself. The IJS has the unique property of lowering venous pressure while enhancing pulmonary blood flow and ventricular preload. We report preliminary results of an analysis of this circulation using a tightly-coupled, multi-scale computational fluid dynamics model. Our calculations show that, constraining the excess volume load to the ventricle at 50% (pulmonary to systemic flow ratio of 1.5), an optimally configured IJS can lower venous pressure by 3 mmHg while increasing systemic oxygen delivery. Even this small decrease in venous pressure may have substantial clinical impact on the Fontan patient. These findings support the potential for a straightforward surgical modification to decrease venous pressure, and perhaps improve clinical outcome in selected patients.
Purpose
Predictive models implemented in medical procedures can potentially bring great benefit to patients and represent a step forward in targeted treatments based on a patient’s physiological condition. It is the purpose of this paper to outline such a model.
Design/methodology/approach
A multi-scale 0D-3D model based on patient specific geometry combines a 0-dimensional lumped parameter model (LPM) with a 3D computational fluid dynamics (CFD) analysis coupled in time, to obtain physiologically viable flow parameters.
Findings
A comparison of physiological data gathered from literature with flow-field measurements in this model shows the viability of this method in relation to potential predictions of pathological flows repercussions and candidate treatments.
Research limitations/implications
A limitation of the model is the absence of compliance in the walls in the CFD fluid domain; however, compliance of the peripheral vasculature is accounted for by the LPM. Currently, an attempt is in progress to extend this multi-scale model to account for the fluid-structure interaction of the ventricular assist device vasculature and hemodynamics.
Originality/value
This work reports on a predictive pulsatile flow model that can be used to investigate surgical alternatives to reduce strokes in LVADs.
The hybrid Norwood operation is performed to treat hypoplastic left heart syndrome. Distal arch obstruction may compromise flow to the brain. In a variant of this procedure, a synthetic graft (reverse Blalock-Taussig shunt) is placed between the pulmonary trunk and innominate artery to improve upper torso blood flow. Thrombi originating in the graft may embolize to the brain. In this study, we used computational fluid dynamics and particle tracking to investigate the patterns of particle embolization as a function of the anatomic position of the reverse Blalock-Taussig shunt. The degree of distal arch obstruction and position of particle origin influence embolization probabilities to the cerebral arteries. Cerebral embolization probabilities can be reduced by as much as 20% by optimizing graft position, for a given arch geometry, degree of distal arch obstruction, and particle origin. There is a tradeoff, however, between cerebral pulmonary and coronary embolization probabilities.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.