This paper aims first at a simultaneous axiomatic presentation of the proof of optimal convergence rates for adaptive finite element methods and second at some refinements of particular questions like the avoidance of (discrete) lower bounds, inexact solvers, inhomogeneous boundary data, or the use of equivalent error estimators. Solely four axioms guarantee the optimality in terms of the error estimators.Compared to the state of the art in the temporary literature, the improvements of this article can be summarized as follows: First, a general framework is presented which covers the existing literature on optimality of adaptive schemes. The abstract analysis covers linear as well as nonlinear problems and is independent of the underlying finite element or boundary element method. Second, efficiency of the error estimator is neither needed to prove convergence nor quasi-optimal convergence behavior of the error estimator. In this paper, efficiency exclusively characterizes the approximation classes involved in terms of the best-approximation error and data resolution and so the upper bound on the optimal marking parameters does not depend on the efficiency constant. Third, some general quasi-Galerkin orthogonality is not only sufficient, but also necessary for the R-linear convergence of the error estimator, which is a fundamental ingredient in the current quasi-optimality analysis due to Stevenson 2007. Finally, the general analysis allows for equivalent error estimators and inexact solvers as well as different non-homogeneous and mixed boundary conditions.
Abstract. Sanitizable signature schemes, as defined by Ateniese et al. (ESORICS 2005), allow a signer to partly delegate signing rights to another party, called the sanitizer. That is, the sanitizer is able to modify a predetermined part of the original message such that the integrity and authenticity of the unchanged part is still verifiable. Ateniese et al. identify five security requirements for such schemes (unforgeability, immutability, privacy, transparency and accountability) but do not provide formal specifications for these properties. They also present a scheme that is supposed to satisfy these requirements.Here we revisit the security requirements for sanitizable signatures and, for the first time, present a comprehensive formal treatment. Besides a full characterization of the requirements we also investigate the relationship of the properties, showing for example that unforgeability follows from accountability. We then provide a full security proof for a modification of the original scheme according to our model.
Received (Day Month Year) Revised (Day Month Year) Communicated by (xxxxxxxxxx)Various applications ranging from spintronic devices, giant magnetoresistance sensors, and magnetic storage devices, include magnetic parts on very different length scales. Since the consideration of the Landau-Lifshitz-Gilbert equation (LLG) constrains the maximum element size to the exchange length within the media, it is numerically not attractive to simulate macroscopic parts with this approach. On the other hand, the magnetostatic Maxwell equations do not constrain the element size, but cannot describe the short-range exchange interaction accurately. A combination of both methods allows to describe magnetic domains within the micromagnetic regime by use of LLG and also considers the macroscopic parts by a non-linear material law using the Maxwell equations. In our work, we prove that under certain assumptions on the non-linear material law, this multiscale version of LLG admits weak solutions. Our proof is constructive in the sense that we provide a linear-implicit numerical integrator for the multiscale model such that the numerically computable finite element solutions admit weak H 1 -convergence (at least for a subsequence) towards a weak solution.
Abstract.We consider the solution of second order elliptic PDEs in R d with inhomogeneous Dirichlet data by means of an h-adaptive FEM with fixed polynomial order p ∈ N. As model example serves the Poisson equation with mixed Dirichlet-Neumann boundary conditions, where the inhomogeneous Dirichlet data are discretized by use of an H 1/2 -stable projection, for instance, the L 2 -projection for p = 1 or the Scott-Zhang projection for general p ≥ 1. For error estimation, we use a residual error estimator which includes the Dirichlet data oscillations. We prove that each H 1/2 -stable projection yields convergence of the adaptive algorithm even with quasi-optimal convergence rate. Numerical experiments with the Scott-Zhang projection conclude the work.Mathematics Subject Classification. 65N30, 65N50.
We propose and analyze a decoupled time-marching scheme for the coupling of the Landau–Lifshitz–Gilbert equation with a quasilinear diffusion equation for the spin accumulation. This model describes the interplay of magnetization and electron spin accumulation in magnetic and nonmagnetic multilayer structures. Despite the strong nonlinearity of the overall PDE system, the proposed integrator requires only the solution of two linear systems per time-step. Unconditional convergence of the integrator towards weak solutions is proved.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.