Network topology is a flourishing interdisciplinary subject that is relevant for different disciplines including quantum gravity and brain research. The discrete topological objects that are investigated in network topology are simplicial complexes. Simplicial complexes generalize networks by not only taking pairwise interactions into account, but also taking into account many-body interactions between more than two nodes. Higher-order Laplacians are topological operators that describe higher-order diffusion on simplicial complexes and constitute the natural mathematical objects that capture the interplay between network topology and dynamics. We show that higher-order up and down Laplacians can have a finite spectral dimension, characterizing the long time behaviour of the diffusion process on simplicial complexes that depends on their order m. We provide a renormalization group theory for the calculation of the higher-order spectral dimension of two deterministic models of simplicial complexes: the Apollonian and the pseudo-fractal simplicial complexes. We show that the RG flow is affected by the fixed point at zero mass, which determines the higher-order spectral dimension d S of the up-Laplacians of order m with m ⩾ 0.
We study the notion of approximate Killing vector fields in several toy models of non-perturbative two-dimensional quantum gravity. Using the framework of discrete exterior calculus, we show how to formulate quantum observables related to such approximate Killing vector fields. Using these methods, we aim to investigate symmetry properties of the space–time geometry produced by the quantum gravitational model at hand. Since we expect quantum fluctuations to dominate at small scales, our goal is to construct a scale-dependent notion of symmetry that might be used to determine whether the emergent (semi-)classical geometry admits any approximate Killing symmetries. We have evaluated one particular choice of such an observable on three ensembles of discrete geometry. We find that the method is useful in the setting where fluctuations are small, but that more work is needed before these ideas can be applied in the deep quantum regime.
Finding diffeomorphism-invariant observables to characterize the properties of gravity and spacetime at the Planck scale is essential for making progress in quantum gravity. The holonomy and Wilson loop of the Levi-Civita connection are potentially interesting ingredients in the construction of quantum curvature observables. Motivated by recent developments in nonperturbative quantum gravity, we establish new relations in three and four dimensions between the holonomy of a finite loop and certain curvature integrals over the surface spanned by the loop. They are much simpler than a gravitational version of the nonabelian Stokes’ theorem, but require the presence of totally geodesic surfaces in the manifold, which follows from the existence of suitable Killing vectors. We show that the relations are invariant under smooth surface deformations, due to the presence of a conserved geometric flux.
The seemingly universal phenomenon of scale-dependent effective dimensions in non-perturbative theories of quantum gravity has been shown to be a potential source of quantum gravity phenomenology. The scale-dependent effective dimension from quantum gravity has only been considered for scalar fields. It is however possible that the non-manifold like structures, that are expected to appear near the Planck scale, have an effective dimension that depends on the type of field under consideration. To investigate this question, we have studied the spectral dimension associated to the Laplace-Beltrami operator generalised to $k$-form fields on spatial slices of the non-perturbative model of quantum gravity known as Causal Dynamical Triangulations. We have found that the two-form, tensor and dual scalar spectral dimensions exhibit a flow between two scales at which an effective dimension appears. However, the one-form and vector spectral dimensions show only a single effective dimension. The fact that the one-form and vector spectral dimension do not show a flow of the effective dimension can potentially be related to the absence of a dispersion relation for the electromagnetic field, but dynamically generated instead of as an assumption.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.