Non-perturbative measurements of low-intensity charged particle beams are particularly challenging to beam diagnostics due to the low amplitude of the induced electromagnetic fields. In the low-energy antiproton decelerator (AD) and the future extra low energy antiproton rings at CERN, an absolute measurement of the beam intensity is essential to monitor the operation efficiency. Superconducting quantum interference device (SQUID) based cryogenic current comparators (CCC) have been used for measuring slow charged beams in the nA range, showing a very good current resolution. But these were unable to measure fast bunched beams, due to the slew-rate limitation of SQUID devices and presented a strong susceptibility to external perturbations. Here, we present a CCC system developed for the AD machine, which was optimised in terms of its current resolution, system stability, ability to cope with short bunched beams, and immunity to mechanical vibrations. This paper presents the monitor design and the first results from measurements with a low energy antiproton beam obtained in the AD in 2015. These are the first CCC beam current measurements ever performed in a synchrotron machine with both coasting and short bunched beams. It is shown that the system is able to stably measure the AD beam throughout the entire cycle, with a current resolution of
.
The superconducting, heavy ion synchrotron SIS100 is the core of the new FAIR facility at GSI, Darmstadt, Germany. Its unique design is dedicated to the acceleration of intermediate charge state heavy ions. Several new technical approaches assure the stabilization of the vacuum dynamics and the minimization of charge related beam loss. Beside high intensity heavy ions, SIS100 will accelerate all ions from Protons to Uranium, and in spite of the fact that superconducting magnets are used, SIS100 shall be as flexible in ramping and cycling as a normal conducting synchrotron.
We report on a novel concept and prototype development of a coreless SQUID-based charged-particle beam monitor as a non-destructive diagnostic tool for accelerator facilities. Omitting the typically used pickup coil with a high magnetic permeability core leads to a significant improvement in low-frequency noise performance. Moreover, a revised shielding geometry allows for very compact and rather lightweight device designs. Based on highly sensitive SQUIDs featuring sub-micron cross-type Josephson tunnel junctions, our prototype device exhibits a current sensitivity of about 6 pA Hz−1/2 in the white noise region. Together with a measured shielding factor of about 135 dB this opens up the way for its widespread use in modern accelerator facilities.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.