Embryonic stem (ES) cells continuously decide whether to maintain pluripotency or differentiate. While exogenous leukemia inhibitory factor and BMP4 perpetuate a pluripotent state, less is known about the factors initiating differentiation. We show that heparan sulfate (HS) proteoglycans are critical coreceptors for signals inducing ES cell differentiation. Genetic targeting of NDST1 and NDST2, two enzymes required for N-sulfation of proteoglycans, blocked differentiation. This phenotype was rescued by HS presented in trans or by soluble heparin. NaClO À 3 , which reduces sulfation of proteoglycans, potently blocked differentiation of wild-type cells. Mechanistically, N-sulfation was identified to be critical for functional autocrine fibroblast growth factor 4 (FGF4) signaling. Microarray analysis identified the pluripotency maintaining transcription factors Nanog, KLF2/4/8, Tbx3, and Tcf3 to be negatively regulated, whereas markers of differentiation such as Gbx2, Dnmt3b, FGF5, and Brachyury were induced by sulfation-dependent FGF receptor (FGFR) signaling. We show that several of these genes are heterogeneously expressed in ES cells, and that targeting of heparan sulfation or FGFR-signaling facilitated a homogenous Nanog/KLF4/Tbx3 positive ES cell state. This finding suggests that the recently discovered heterogeneous state of ES cells is regulated by HS-dependent FGFR signaling. Similarly, culturing blastocysts with NaClO À 3 eliminated GATA6-positive primitive endoderm progenitors generating a homogenous Nanog-positive inner cell mass. Functionally, reduction of sulfation robustly improved de novo ES cell derivation efficiency. We conclude that N-sulfated HS is required for FGF4 signaling to maintain ES cells primed for differentiation in a heterogeneous state. Inhibiting this pathway facilitates a more naïve ground state.
Objective— The aim of this work was to develop a mouse embryonic stem (ES) cell system addressing the early specification of the developing vasculature into functional arteries and veins. Methods and Results— ES cells were differentiated 4 days on collagen-type IV coated dishes to obtain Flk1 + endothelial precursors. Sub-culture of these precursors for additional 4 days robustly generated, in a VEGF dose-dependent manner, mature endothelial cells. Arterial marker genes were specifically expressed in cultures differentiated with high VEGF concentration whereas the venous marker gene COUP-TFII was upregulated in endothelial cells induced through low and intermediate VEGF concentrations. This VEGF-dependent arterialization could be blocked by inhibition of Notch resulting in an arterial to venous fate switch. Functional and morphological studies, ie, measurement of sprout length, pericyte recruitment, and interleukin-I-induced leukocyte adhesion, further confirmed their arterial and venous identity. Conclusions— We conclude that endothelial cells with distinct molecular, morphological, and functional characteristics of arteries and veins can be derived through in vitro differentiation of ES cells in a VEGF dose-dependent and Notch-regulated manner.
HIF-1 alpha and HMOX-1 provided protection against H(2)O(2)-induced damage in HL-1 cells. Remote gene delivery of HIF-1 alpha afforded cardioprotective effects. These were dependent on HMOX activity, as an HMOX blocker abolished the effects, and they were mimicked by pre-treatment with HMOX-1. Downstream to HMOX-1, bilirubin as well as carbon monoxide may be organ effectors.
Hypoxia (low oxygen) and Notch signaling are 2 important regulators of vascular development, but how they interact in controlling the choice between arterial and venous fates for endothelial cells during vasculogenesis is less well understood. In this report, we show that hypoxia and Notch signaling intersect in promotion of arterial differentiation. Hypoxia upregulated expression of the Notch ligand Dll4 and increased Notch signaling in a process requiring the vasoactive hormone adrenomedullin. Notch signaling also upregulated Dll4 expression, leading to a positive feedback loop sustaining Dll4 expression and Notch signaling. In addition, hypoxia-mediated upregulation of the arterial marker genes Depp, connexin40 (Gja5), Cxcr4, and Hey1 required Notch signaling. In conclusion, the data reveal an intricate interaction between hypoxia and Notch signaling in the control of endothelial cell differentiation, including a hypoxia/adrenomedullin/Dll4 axis that initiates Notch signaling and a requirement for Notch signaling to effectuate hypoxia-mediated induction of the arterial differentiation program.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.