Among all photosynthetic organisms, green bacteria have evolved one of the most efficient light-harvesting antenna, the chlorosome, that contains hundreds of thousands of bacteriochlorophyll molecules, allowing these bacteria to grow photosynthetically by absorbing only a few photons per bacteriochlorophyll molecule per day. In contrast to other photosynthetic light-harvesting antenna systems, for which a protein scaffold imposes the proper positioning of the chromophores with respect to each other, in chlorosomes, this is accomplished solely by self-assembly. This has aroused enormous interest in the structure-function relations of these assemblies, as they can serve as blueprints for artificial light harvesting systems. In spite of these efforts, conclusive structural information is not available yet, reflecting the sample heterogeneity inherent to the natural system. Here we combine mutagenesis, polarization-resolved single-particle fluorescence-excitation spectroscopy, cryo-electron microscopy, and theoretical modeling to study the chlorosomes of the green sulfur bacterium Chlorobaculum tepidum. We demonstrate that only the combination of these techniques yields unambiguous information on the structure of the bacteriochlorophyll aggregates within the chlorosomes. Moreover, we provide a quantitative estimate of the curvature variation of these aggregates that explains ongoing debates concerning the chlorosome structure.
Microbial-mat communities in the effluent channels of Octopus and Mushroom Springs within the Lower Geyser Basin at Yellowstone National Park have been studied for nearly 50 years. The emphasis has mostly focused on the chlorophototrophic bacterial organisms of the phyla Cyanobacteria and Chloroflexi. In contrast, the diversity and metabolic functions of the heterotrophic community in the microoxic/anoxic region of the mat are not well understood. In this study we analyzed the orange-colored undermat of the microbial community of Mushroom Spring using metagenomic and rRNA-amplicon (iTag) analyses. Our analyses disclosed a highly diverse community exhibiting a high degree of unevenness, strongly dominated by a single taxon, the filamentous anoxygenic phototroph, Roseiflexus spp. The second most abundant organisms belonged to the Thermotogae, which have been hypothesized to be a major source of H 2 from fermentation that could enable photomixotrophic metabolism by Chloroflexus and Roseiflexus spp. Other abundant organisms include two members of the Armatimonadetes (OP10); Thermocrinis sp.; and phototrophic and heterotrophic members of the Chloroflexi. Further, an Atribacteria (OP9/JS1) member; a sulfate-reducing Thermodesulfovibrio sp.; a Planctomycetes member; a member of the EM3 group tentatively affiliated with the Thermotogae, as well as a putative member of the Arminicenantes (OP8) represented ≥1% of the reads. Archaea were not abundant in the iTag analysis, and no metagenomic bin representing an archaeon was identified. A high microdiversity of 16S rRNA gene sequences was identified for the dominant taxon, Roseiflexus spp. Previous studies demonstrated that highly similar Synechococcus variants in the upper layer of the mats represent ecological species populations with specific ecological adaptations. This study suggests that similar putative ecotypes specifically adapted to different niches occur within the undermat community, particularly for Roseiflexus spp.
Because of recent advances in omics methodologies, knowledge of chlorophototrophy (i.e., chlorophyll-based phototrophy) in bacteria has rapidly increased. Chlorophototrophs currently are known to occur in seven bacterial phyla: Cyanobacteria, Proteobacteria, Chlorobi, Chloroflexi, Firmicutes, Acidobacteria, and Gemmatimonadetes. Other organisms that can produce chlorophylls and photochemical reaction centers may still be undiscovered. Here we summarize the current status of the taxonomy and phylogeny of chlorophototrophic bacteria as revealed by genomic methods. In specific cases, we briefly describe important ecophysiological and metabolic insights that have been gained from the application of genomic methods to these bacteria. In the 20 years since the completion of the Synechocystis sp. PCC 6803 genome in 1996, approximately 1,100 genomes have been sequenced, which represents nearly the complete diversity of known chlorophototrophic bacteria. These data are leading to new insights into many important processes, including photosynthesis, nitrogen and carbon fixation, cellular differentiation and development, symbiosis, and ecosystem functionality.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.