Brazil is a tropical country with continental dimensions and abundant solar resources that are still underutilized. However, solar energy is one of the most promising renewable sources in the country. The proper inspection of Photovoltaic (PV) solar plants is an issue of great interest for the Brazilian territory’s energy management agency, and advances in computer vision and deep learning allow automatic, periodic, and low-cost monitoring. The present research aims to identify PV solar plants in Brazil using semantic segmentation and a mosaicking approach for large image classification. We compared four architectures (U-net, DeepLabv3+, Pyramid Scene Parsing Network, and Feature Pyramid Network) with four backbones (Efficient-net-b0, Efficient-net-b7, ResNet-50, and ResNet-101). For mosaicking, we evaluated a sliding window with overlapping pixels using different stride values (8, 16, 32, 64, 128, and 256). We found that: (1) the models presented similar results, showing that the most relevant approach is to acquire high-quality labels rather than models in many scenarios; (2) U-net presented slightly better metrics, and the best configuration was U-net with the Efficient-net-b7 encoder (98% overall accuracy, 91% IoU, and 95% F-score); (3) mosaicking progressively increases results (precision-recall and receiver operating characteristic area under the curve) when decreasing the stride value, at the cost of a higher computational cost. The high trends of solar energy growth in Brazil require rapid mapping, and the proposed study provides a promising approach.
Apresenta-se uma análise de mudanças temporais da paisagem de 89,4 km2 em uma importante área de cerrado, cerradão e matas que é o Vale do Rio Araguari. O objetivo do estudo foi analisar mudanças na paisagem e uso do solo na região rural de Sobradinho, a partir de imagens de satélite de 1986 comparando-o com imagens de 2004. É proposto a implementação de redes interligadas de áreas protegidas. E por último obter um histórico de uso da terra a partir de moradores do local. Com interpretação visual de imagens de satélite dos anos de 1986 e 2004 foram laborados mapas de uso e ocupação do solo de Sobradinho. Os resultados mostraram diferenças na composição da paisagem nesta escala temporal e sugerem que deve ser dado maior atenção aos fragmentos de áreas naturais no Cerrado. Palavras chave: uso da terra, Cerrado, fragmentação, Triângulo Mineiro.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.