High-throughput siRNA screens were only recently applied to cell factories to identify novel engineering targets which are able to boost cells towards desired phenotypes. While siRNA libraries exist for model organisms such as mice, no CHO-specific library is publicly available, hindering the application of this technique to CHO cells. The optimization of these cells is of special interest, as they are the main host for the production of therapeutic proteins. Here, we performed a cross-species approach by applying a mouse whole-genome siRNA library to CHO cells, optimized the protocol for suspension cultured cells, as this is the industrial practice for CHO cells, and developed an
in silico
method to identify functioning siRNAs, which also revealed the limitations of using cross-species libraries. With this method, we were able to identify several genes that, upon knockdown, enhanced the total productivity in the primary screen. A second screen validated two of these genes,
Rad21
and
Chd4
, whose knockdown was tested in additional CHO cell lines, confirming the induced high productivity phenotype, but also demonstrating the cell line/clone specificity of engineering effects.
Predictably regulating protein expression levels to improve recombinant protein production has become an important tool, but is still rarely applied to engineer mammalian cells. We therefore sought to set-up an easy-to-implement toolbox to facilitate fast and reliable regulation of protein expression in mammalian cells by introducing defined RNA hairpins, termed ‘regulation elements (RgE)’, in the 5′-untranslated region (UTR) to impact translation efficiency. RgEs varying in thermodynamic stability, GC-content and position were added to the 5′-UTR of a fluorescent reporter gene. Predictable translation dosage over two orders of magnitude in mammalian cell lines of hamster and human origin was confirmed by flow cytometry. Tuning heavy chain expression of an IgG with the RgEs to various levels eventually resulted in up to 3.5-fold increased titers and fewer IgG aggregates and fragments in CHO cells. Co-expression of a therapeutic Arylsulfatase-A with RgE-tuned levels of the required helper factor SUMF1 demonstrated that the maximum specific sulfatase activity was already attained at lower SUMF1 expression levels, while specific production rates steadily decreased with increasing helper expression. In summary, we show that defined 5′-UTR RNA-structures represent a valid tool to systematically tune protein expression levels in mammalian cells and eventually help to optimize recombinant protein expression.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.