Cells continually assess their energy and nutrient state to maintain growth and survival and engage necessary homeostatic mechanisms. Cell autonomous responses to the fed state require the surveillance of the availability of amino acids and other nutrients. The mammalian target of rapamycin complex 1 (mTORC1) integrates information on nutrient and amino acid availability to support protein synthesis and cell growth. We identify the G protein-coupled receptor (GPCR) T1R1/T1R3 as a direct sensor of the fed state and amino acid availability. Knocking down this receptor, which is found in most tissues, reduces the ability of amino acids to signal to mTORC1. Interfering with this receptor alters localization of mTORC1, downregulates expression of pathway inhibitors, upregulates key amino acid transporters, blocks translation initiation, and induces autophagy. These findings reveal a mechanism for communicating amino acid availability through a GPCR to mTORC1 in mammals.
p21-Activated kinases (PAKs) are regulators of cell motility and proliferation. PAK activity is regulated in part by phosphoinositide-dependent kinase 1 (PDK1). We hypothesized that reduced PAK activity was involved in the effects of 2-amino-N-{4-[5-(2-phenanthrenyl)-3-(trifluoromethyl)-1H-pyrazol-1-yl]-phenyl} acetamide (OSU-03012), a previously characterized PDK1 inhibitor derived from celecoxib. In three human thyroid cancer cell lines, OSU-03012 inhibited cell proliferation with reduced AKT phosphorylation by PDK1. OSU-03012 unexpectedly inhibited PAK phosphorylation at lower concentrations than PDK1-dependent AKT phosphorylation in two of the three lines. In cellfree kinase assays, OSU-03012 was shown to inhibit PAK activity and compete with ATP binding. In addition, computer modeling predicted a docking site for OSU-03012 in the ATP binding motif of PAK1. Finally, overexpression of constitutively activated PAK1 partially rescued the ability of motile NPA thyroid cancer cells to migrate during OSU-03012 treatment, suggesting that inhibition of PAK may be involved in the cellular effects of OSU-03012 in these cells. In summary, OSU-03012 is a direct inhibitor of PAK, and inhibition of PAK, either directly or indirectly, may be involved in its biological effects in vitro.
The mitogen-activated protein kinases (MAPKs) ERK1/2 regulate numerous cellular processes including gene transcription, proliferation, and differentiation. The only known substrates of the MAP2Ks MEK1/2 are ERK1/2; thus, the MEK inhibitors PD98059, U0126, and PD0325901 have been important tools in determining the functions of ERK1/2. By using these inhibitors and genetically manipulating MEK, we find that ERK1/2 activation is neither sufficient nor necessary for regulated insulin secretion from pancreatic beta cells or epinephrine secretion from chromaffin cells. We show that both PD98059 and U0126 reduce agonist-induced calcium entry into cells independently of their ability to inhibit ERK1/2. Caution should be used when interpreting results from experiments using these compounds.
Constitutive WNT activity drives the growth of various human tumors, including nearly all colorectal cancers (CRCs). Despite this prominence in cancer, no WNT inhibitor is currently approved for use in the clinic largely due to the small number of druggable signaling components in the WNT pathway and the substantial toxicity to normal gastrointestinal tissue. We have shown that pyrvinium, which activates casein kinase 1α (CK1α), is a potent inhibitor of WNT signaling. However, its poor bioavailability limited the ability to test this first-in-class WNT inhibitor in vivo. We characterized a novel small-molecule CK1α activator called SSTC3, which has better pharmacokinetic properties than pyrvinium, and found that it inhibited the growth of CRC xenografts in mice. SSTC3 also attenuated the growth of a patient-derived metastatic CRC xenograft, for which few therapies exist. SSTC3 exhibited minimal gastrointestinal toxicity compared to other classes of WNT inhibitors. Consistent with this observation, we showed that the abundance of the SSTC3 target, CK1α, was decreased in WNT-driven tumors relative to normal gastrointestinal tissue, and knocking down CK1α increased cellular sensitivity to SSTC3. Thus, we propose that distinct CK1α abundance provides an enhanced therapeutic index for pharmacological CK1α activators to target WNT-driven tumors.
The MAPKs ERK1/2 respond to nutrients and other insulin secretagogues in pancreatic β-cells and mediate nutrient-dependent insulin gene transcription. Nutrients also stimulate the mechanistic target of rapamycin complex 1 (mTORC1) to regulate protein synthesis. We showed previously that activation of both ERK1/2 and mTORC1 in the MIN6 pancreatic β-cell-derived line by extracellular amino acids (AAs) is at least in part mediated by the heterodimeric T1R1/T1R3, a G protein-coupled receptor. We show here that AAs differentially activate these two signaling pathways in MIN6 cells. Pretreatment with pertussis toxin did not prevent the activation of either ERK1/2 or mTORC1 by AAs, indicating that G(I) is not central to either pathway. Although glucagon-like peptide 1, an agonist for a G(s-)coupled receptor, activated ERK1/2 well and mTORC1 to a small extent, AAs had no effect on cytosolic cAMP accumulation. Ca(2+) entry is required for ERK1/2 activation by AAs but is dispensable for AA activation of mTORC1. Pretreatment with UBO-QIC, a selective G(q) inhibitor, reduced the activation of ERK1/2 but had little effect on the activation of mTORC1 by AAs, suggesting a differential requirement for G(q). Inhibition of G(12/13) by the overexpression of the regulator of G protein signaling domain of p115 ρ-guanine nucleotide exchange factor had no effect on mTORC1 activation by AAs, suggesting that these G proteins are also not involved. We conclude that AAs regulate ERK1/2 and mTORC1 through distinct signaling pathways.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.