Hemorrhagic shock has recently been shown to cause shedding of a carbohydrate surface layer of endothelial cells known as the glycocalyx. This shedding of the glycocalyx is thought to be a mediator of the coagulopathy seen in trauma patients. Clinical studies have demonstrated increases in shed glycocalyx in the blood after trauma, and animal studies have measured glycocalyx disruption in blood vessels in the lung, skeletal muscle, and mesentery. However, no study has measured glycocalyx disruption across a wide range of vascular beds to quantify the primary locations of this shedding. Methods: In the present study, we used a rat model of hemorrhagic shock and resuscitation to more comprehensively assess glycocalyx disruption across a range of organs. Glycocalyx disruption was assessed by fluorescent-labeled wheat germ agglutinin or syndecan-1 antibody staining in flash frozen tissue. Results: We found that our model did elicit glycocalyx shedding, as assessed by an increase in plasma syndecan-1 levels. In tissue sections, we found that the greatest glycocalyx disruption occurred in vessels in the lung and intestine. Shedding to a lesser extent was observed in vessels of the brain, heart, and skeletal muscle. Liver vessel glycocalyx was unaffected, and kidney vessels, including the glomerular capillaries, displayed an increase in glycocalyx. We also measured reactive oxygen species (ROS) in the endothelial cells from these organs, and found that the greatest increase in ROS occurred in the two beds with the greatest glycocalyx shedding, the lungs, and intestine. We also detected fibrin deposition in lung vessels following hemorrhage-resuscitation. Conclusions: We conclude that the endothelium in the lungs and intestine are particularly susceptible to the oxidative stress of hemorrhage-resuscitation, as well as the resulting glycocalyx disruption. Thus, these two vessel beds may be important drivers of coagulopathy in trauma patients.
BACKGROUND: Succinate (SI) is a citric acid cycle metabolite that accumulates in tissues during hemorrhagic shock (HS) due to electron transport chain uncoupling. Dimethyl malonate (DMM) is a competitive inhibitor of SI dehydrogenase, which has been shown to reduce SI accumulation and protect against reperfusion injury. Whether DMM can be therapeutic after severe HS is unknown. We hypothesized that DMM would prevent SI buildup during resuscitation (RES) in a swine model of HS, leading to better physiological recovery after RES. METHODS:The carotid arteries of Yorkshire pigs were cannulated with a 5-Fr catheter. After placement of a Swan-Ganz catheter and femoral arterial line, the carotid catheters were opened and the animals were exsanguinated to a mean arterial pressure (MAP) of 45 mm. After 30 minutes in the shock state, the animals were resuscitated to a MAP of 60 mm using lactated ringers. A MAP above 60 mm was maintained throughout RES. One group received 10 mg/kg of DMM (n = 6), while the control received sham injections (n = 6). The primary end-point was SI levels. Secondary end-points included cardiac function and lactate. RESULTS:Succinate levels increased from baseline to the 20-minute RES point in control, while the DMM cohort remained unchanged. The DMM group required less intravenous fluid to maintain a MAP above 60 (450.0 vs. 229.0 mL; p = 0.01). The DMM group had higher pulmonary capillary wedge pressure at the 20-minute and 40-minute RES points. The DMM group had better recovery of cardiac output and index during RES, while the control had no improvement. While lactate levels were similar, DMM may lead to increased ionized calcium levels. DISCUSSION:Dimethyl malonate slows SI accumulation during HS and helps preserve cardiac filling pressures and function during RES. In addition, DMM may protect against depletion of ionized calcium. Dimethyl malonate may have therapeutic potential during HS.
Blood-brain barrier (BBB) disruption following ischemic stroke (IS) contributes to hemorrhagic transformation, brain edema, increased neural dysfunction, secondary injury, and mortality. Brain endothelial cells form a para and transcellular barrier to most blood-borne solutes via tight junctions (TJs) and rare transcytotic vesicles. The prevailing view attributes the destruction of TJs to the resulting BBB damage following IS. Recent studies define a stepwise impairment of the transcellular barrier followed by the paracellular barrier which accounts for the BBB leakage in IS. The increased endothelial transcytosis that has been proven to be caveolae-mediated, precedes and is independent of TJs disintegration. Thus, our understanding of post stroke BBB deficits needs to be revised. These recent findings could provide a conceptual basis for the development of alternative treatment strategies. Presently, our concept of how BBB endothelial transcytosis develops is incomplete, and treatment options remain limited. This review summarizes the cellular structure and biological classification of endothelial transcytosis at the BBB and reviews related molecular mechanisms. Meanwhile, relevant transcytosis-targeted therapeutic strategies for IS and research entry points are prospected.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.