Actualmente el acceso a Internet se ha convertido en un factor indispensable para el desarrollo de la humanidad. En consecuencia, organizaciones y personas acceden a diferentes servicios vía Internet, desde cualquier lugar y dispositivo. Adicionalmente, la tecnología inalámbrica (WiFi) se ha convertido en la más utilizada en los servicios de telecomunicaciones, por todas las ventajas que ofrece; respecto a movilidad, accesibilidad y disponibilidad constante a los usuarios. Sin embargo, hay varios riesgos informáticos asociados a las conexiones inalámbricas; y uno de los riesgos más importantes se origina por el desconocimiento de los niveles de seguridad en las redes inalámbricas donde se conectan ocasionalmente los usuarios; convirtiéndolos en vulnerables a atacantes que se aprovechan de la tecnología para acceder sin autorización a sus dispositivos, y modificar parámetros de configuración, robar contraseñas, información privada, entre otras acciones maliciosas. Por lo tanto, este trabajo presenta una metodología de pentesting para realizar pruebas de vulnerabilidad de dispositivos y sistemas informáticos utilizando técnicas de Ethical hacking. Esta metodología se implementó usando la herramienta llamada Metasploit Framework, que funciona sobre plataforma de hardware (Raspberry Pi) y software libre (Kali-Linux). Las pruebas ejecutadas en escenarios reales permitieron comprobar que se pueden desarrollar e implementar sistemas robustos utilizando plataformas de hardware y software abierto de bajo costo; que pueden ser utilizados en entornos productivos para evaluar la vulnerabilidad en aspectos de seguridad en dispositivos móviles y sistemas informáticos.
Nowadays, computer programs affecting computers both locally and network-wide have led to the design and development of different preventive and corrective strategies to remedy computer security problems. This dynamic has been important for the understanding of the structure of attacks and how best to counteract them, making sure that their impact is less than expected by the attacker.For this research, a simulation was carried out using the DATASET-KDD NSL at 100%, generating an experimental environment, where processes of pre-processing, training, classification, and evaluation of model quality metrics were carried out. Likewise, a comparative analysis of the results obtained after implementing different feature selection techniques (INFO.GAIN, GAIN RATIO, and ONE R), and classification techniques based on neural networks that use an unsupervised learning algorithm based on selforganizing maps (SOM and GHSOM), with the purpose of classifying bi-class network traffic automatically. From the above, a 97.09% hit rate was obtained with 21 features by implementing the GHSOM classifier with 10-fold cross-validation with the ONE R feature selection technique, which would improve the efficiency and performance of Intrusion Detection Systems (IDS).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.