Detection of thyroid nodules by physical examination and high-resolution ultrasonography was compared using small groups of blinded, experienced physician examiners working with a sample of 2441 persons from Estonia, most of whom were Chernobyl nuclear reactor clean-up workers. A random subsample of 113 (5%) persons was subjected to triple control examinations with both physical examination and high-resolution ultrasonography. Positive high-resolution ultrasonographic findings were considerably more reproducible among different observers than were positive physical examination findings. Agreement between methods was poor. Nodules were found in 169 (6.9%) subjects by physical examination and in 249 (10.2%) subjects by high-resolution ultrasonography. Physical examination found only 53 (21%) of the 249 nodules found by high-resolution ultrasonography. High-resolution ultrasonography did not confirm the existence of 115 (68%) of the 169 nodules found by physical examination. Only 6.4% of nodules less than 0.5 cm in diameter, as based on high-resolution ultrasonographic results, were detected by physical examination. Physical examination detection improved with increasing nodule size but was still only 48.2% for nodules larger than 2 cm. Physical examination was relatively effective in detecting nodules in the isthmus of the thyroid gland but much less so for nodules in the upper pole of the gland. Clinical evaluation and epidemiologic studies of nodular thyroid disease stand to benefit from the greater sensitivity and specificity of ultrasonographic examinations.
A case-control study of hematological malignancies was conducted among Chernobyl liquidators (accident recovery workers) from Belarus, Russia and Baltic countries in order to assess the effect of low-to-medium dose protracted radiation exposures on the relative risk of these diseases. The study was nested within cohorts of liquidators who had worked in 1986–87 around the Chernobyl plant. 117 cases (69 leukemia, 34 non-Hodgkin Lymphoma (NHL) and 14 other malignancies of lymphoid and hematopoietic tissue) and 481 matched controls were included in the study. Individual dose to the bone marrow and uncertainties were estimated for each subject. The main analyses were restricted to 70 cases (40 leukemia, 20 NHL and 10 other) and their 287 matched controls with reliable information on work in the Chernobyl area. Most subjects received very low doses (median 13 mGy). For all diagnoses combined, a significantly elevated OR was seen at doses of 200 mGy and above. The Excess Relative Risk (ERR) per 100 mGy was 0.60 (90% confidence interval (CI): −0.02, 2.35). The corresponding estimate for leukemia excluding chronic lymphoid leukemia (CLL) was 0.50 (90%CI −0.38, 5.7). It is slightly higher than, but statistically compatible with, those estimated from a-bomb survivors and recent low dose-rate studies. Although sensitivity analyses showed generally similar results, we cannot rule out the possibility that biases and uncertainties could have led to over or underestimation of the risk in this study.
After the Chernobyl accident in 1986, the "liquidators" or clean-up workers were among those who received the highest radiation doses to the thyroid from external radiation. Some were also exposed to radioiodines through inhalation or ingestion. A collaborative case-control study nested within cohorts of Belarusian, Russian and Baltic liquidators was conducted to evaluate the radiation-induced risk of thyroid cancer. The study included 107 cases and 423 controls. Individual doses to the thyroid from external radiation and from iodine-131 ((131)I) were estimated for each subject. Most subjects received low doses (median 69 mGy). A statistically significant dose-response relationship was found with total thyroid dose. The Excess Relative Risk (ERR) per 100 mGy was 0.38 [95% confidence interval (CI): 0.10, 1.09]. The risk estimates were similar when doses from (131)I and external radiation were considered separately, although for external radiation the ERR was not statistically significantly elevated. The ERR was similar for micro carcinomas and larger size tumors, and for tumors with and without lymph node involvement. Although recall bias and uncertainties in doses could have affected the magnitude of the risk estimates, the findings of this study contribute to a better characterization the risk of thyroid cancer after radiation exposure in adulthood.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.