Four corewood types were examined from sapling trees of two clones of Pinus radiata grown in a glasshouse. Trees were grown either straight to produce normal corewood, tilted at 45°from the vertical to produce opposite corewood and compression corewood, or rocked to produce flexure corewood. Mean cellulose microfibril angle of tracheid walls was estimated by X-ray diffraction and longitudinal swelling measured between an oven dry and moisture saturated state. Lignin and acetyl contents of the woods were measured and the monosaccharide compositions of the cell-wall polysaccharides determined. Finely milled wood was analysed using solution-state 2D NMR spectroscopy of gels from finely milled wood in DMSO-d 6 /pyridine-d 5 . Although there was no significant difference in cellulose microfibril angle among the corewood types, compression corewood had the highest longitudinal swelling. A lignin content[32 % and a galactosyl residue content[6 % clearly divided severe compression corewood from the other corewood types. Relationships could be drawn between lignin content and longitudinal swelling, and between galactosyl residue content and longitudinal swelling. The 2D NMR spectra showed that the presence of H-units in lignin was exclusive to compression corewood, which also had a higher (1 ? 4)-b-D-galactan content, defining a unique composition for that corewood type.
BackgroundAt ripeness, the outer husk of “covered” barley grains firmly adheres to the underlying caryopsis. A cuticular cementing layer on the caryopsis is required for husk adhesion, however the quality of adhesion varies significantly among cultivars which produce the cementing layer, resulting in the economically important malting defect, grain skinning. The composition of the cementing layer, and grain organ development have been hypothesised to influence the quality of husk adhesion. Plants of Hordeum vulgare ‘Concerto’ were grown at different temperatures pre- and post-anthesis to effect changes in the development of the husk, caryopsis and cuticular cementing layer, to determine how these variables influence the quality of husk-to-caryopsis adhesion.ResultsWarm conditions pre-anthesis decreased the quality of husk adhesion, and consequently increased the incidence of grain skinning. Cool post-anthesis conditions further decreased the quality of husk adhesion. The composition of the cementing layer, rather than its structure, differed with respect to husk adhesion quality. This cementing layer was produced at the late milk stage, occurring between nine and 29 days post-anthesis, conditional on the temperature-dependent growth rate. The compounds octadecanol, tritriacontane, campesterol and β-sitosterol were most abundant in caryopses with high-quality husk adhesion. The differences in adhesion quality were not due to incompatible husk and caryopsis dimensions affecting organ contact.ConclusionsThis study shows that husk-to-caryopsis adhesion is dependent on cementing layer composition, and implies that this composition is regulated by temperature before, and during grain development. Understanding this regulation will be key to improving husk-to-caryopsis adhesion.Electronic supplementary materialThe online version of this article (doi: 10.1186/s12870-017-1113-4) contains supplementary material, which is available to authorized users.
& Key message Total bark extractive content increases at positions higher in the trunk of Abies alba Mill. trees. The greatest proportions of bark polyphenolic extractives are found in the lower section of the trunk, below the crown. & Context The bark of commercially grown softwood trees is a potentially valuable source of secondary metabolites including polyphenols such as tannins, used in the manufacture of adhesives and resins. There is little information about how the yield and composition of bark extracts vary longitudinally within trees and with respect to the presence or absence of branches. & Aims We examined the variability of bark secondary metabolites in the softwood Abies alba both longitudinally within trees and among trees at specific sample heights. The aim was to determine whether specific bark fractions within this species contain more extractable secondary metabolites than others. & Methods Eight trees of A. alba were harvested, and up to 13 discs were cut along the trunk from 30 cm above the ground to where the trunk was only 10 cm in diameter. Milled bark was extracted with water:ethanol (1:1) using an accelerated solvent extractor and the dry yield calculated. Extract composition was examined by liquid chromatography followed by mass spectrometry. & Results Total extract yield increased from the base of the tree towards the top. The yield of the most abundant polyphenolic compounds decreased from the base of the tree towards the top, indicating the total extracts included compounds that were not detectable with the chromatographic method used.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.