Neurofibromatosis type 2 (NF2) is an inherited predisposition cancer syndrome characterized by the development of multiple benign tumors in the nervous system including schwannomas, meningiomas, and ependymomas. Using a disease model comprising primary human schwannoma cells, we previously demonstrated that adherens junctions (AJs) are impaired in schwannoma cells because of a ubiquitous, upregulated Rac activity. However, the mechanism by which loss of contact inhibition leads to proliferation remains obscure in merlin-deficient tumors. In this study, we show that proliferative Wnt/β-catenin signaling is elevated as active β-catenin (dephosphorylated at serine 37 and threoine 41) localizes to the nucleus and the Wnt targets genes c-myc and cyclin D1 are upregulated in confluent human schwannoma cells. We demonstrate that Rac effector p21-activated kinase 2 (PAK2) is essential for the activation of Wnt/β-catenin signaling because depletion of PAK2 suppressed active β-catenin, c-myc, and cyclin D1. Most importantly, the link between the loss of the AJ complex and the increased proliferation in human schwannoma cells is connected by Src and platelet-derived growth factor receptor-induced tyrosine 654 phosphorylation on β-catenin and associated with degradation of N-cadherin. We also demonstrate that active merlin maintains β-catenin and N-cadherin complex at the plasma membrane through direct regulation. Finally, we demonstrate that phosphorylation of tyrosine 654 is critical for the increased proliferation in human schwannoma cells because overexpression of a Y654F mutant β-catenin reduces hyperproliferation of schwannoma cells. We suggest a model that these pathways are coordinated and relevant for proliferation in merlin-deficient tumors.
Loss of the tumor suppressor merlin causes development of the tumors of the nervous system, such as schwannomas, meningiomas, and ependymomas occurring spontaneously or as part of a hereditary disease Neurofibromatosis Type 2 (NF2). Current therapies, (radio) surgery, are not always effective. Therefore, there is a need for drug treatments for these tumors. Schwannomas are the most frequent of merlin-deficient tumors and are hallmark for NF2. Using our in vitro human schwannoma model, we demonstrated that merlin-deficiency leads to increased proliferation, cell-matrix adhesion, and survival. Increased proliferation due to strong activation of extracellular-signal-regulated kinase 1/2 (ERK1/2) is caused by overexpression/activation of platelet-derived growth factor receptor-β (PDGFR-β) and ErbB2/3 which we successfully blocked with AZD6244, sorafenib, or lapatinib. Schwannoma basal proliferation is, however, only partly dependent on PDGFR-β and is completely independent of ErbB2/3. Moreover, the mechanisms underlying pathological cell-matrix adhesion and survival of schwannoma cells are still not fully understood. Here, we demonstrate that insulin-like growth factor-I receptor (IGF-IR) is strongly overexpressed and activated in human primary schwannoma cells. IGF-I and -II are overexpressed and released from schwannoma cells. We show that ERK1/2 is relevant for IGF-I-mediated increase in proliferation and cell-matrix adhesion, c-Jun N-terminal kinases for increased proliferation and AKT for survival. We demonstrate new mechanisms involved in increased basal proliferation, cell-matrix adhesion, and survival of schwannoma cells. We identified therapeutic targets IGF-IR and downstream PI3K for treatment of schwannoma and other merlin-deficient tumors and show usefulness of small molecule inhibitors in our model. PI3K is relevant for both IGF-IR and previously described PDGFR-β signaling in schwannoma.
Merlin is a tumour suppressor involved in the development of a variety of tumours including mesotheliomas. Neurofibromatosis type 2 (NF2), a dominantly inherited tumour disease, is also caused by loss of merlin. NF2 patients suffer from multiple genetically well-defined tumours, schwannomas are most frequent among those. Using our in vitro model for human schwannoma, we found that schwannoma cells display enhanced proliferation because of the overexpression/activation of platelet-derived growth factor receptor and ErbB2/3, increased cell-matrix adhesion because of the overexpression of integrins, and decreased apoptosis. Mechanisms underlying schwannomas basal proliferation and cell-matrix adhesion are not understood. Here, we investigated insulin-like growth factor-binding protein-1 (IGFBP-1), which is expressed and released from central nervous system tumours and strongly overexpressed in schwannoma at the mRNA level. IGFBP-1 acts via b1-integrin and focal-adhesion-kinase (FAK), which are strongly overexpressed and basally activated in schwannoma. Using short hairpin RNA knockdown, small inhibitors and recombinant IGFBP-1, we demonstrate that schwannoma cells, in contrast to Schwann cells, release IGFBP-1 that activates the Src/FAK pathway, via integrin b1, potentiating schwannoma's proliferation and cell-matrix adhesion. We show that FAK localizes to the nucleus and Src triggers IGFBP-1 production. Further, we observed downregulation of the tumour-suppressor phosphatase and tensin homolog in schwannoma cells leading to increased activity of antiapoptotic AKT. Thus, IGFBP-1/integrin b1/Src/FAK pathway has a crucial role in merlin-related tumourigenesis and therefore represents an important therapeutic target in the treatment of merlin-deficient tumours.
Loss of the tumor suppressor merlin is a cause of frequent tumors of the nervous system, such as schwannomas, meningiomas, and ependymomas, which occur spontaneously or as part of neurofibromatosis type 2 (NF2). Because there is medical need for drug therapies for these tumors, our aim is to find therapeutic targets. We have studied the pathobiology of schwannomas, because they are the most common merlin-deficient tumors and are a model for all merlin-deficient tumors. With use of a human schwannoma in vitro model, we previously described strong overexpression/activation of platelet-derived growth factor receptor-β (PDGFR-β) leading to strong, long-lasting activation of extracellular-signal-regulated kinase (ERK1/2) and AKT and increased schwannoma growth, which we successfully inhibited using the PDGFR/Raf inhibitor sorafenib. However, the benign character of schwannomas may require long-term treatment; thus, drug tolerability is an issue. With the use of Western blotting, proliferation assays, viability assays, and a primary human schwannoma cell in vitro model, we tested the PDGFR/c-KIT inhibitors imatinib (Glivec(;) Novartis) and nilotinib (Tasigna(;) Novartis). Imatinib and nilotinib inhibited PDGF-DD-mediated ERK1/2 activation, basal and PDGF-DD-mediated activation of PDGFR-β and AKT, and schwannoma proliferation. Nilotinib is more potent than imatinib, exerting its maximal inhibitory effect at concentrations lower than steady-state trough plasma levels. In addition, nilotinib combined with the MEK1/2 inhibitor selumetinib (AZD6244) at low concentrations displayed stronger efficiency toward tumor growth inhibition, compared with nilotinib alone. We suggest that therapy with nilotinib or combinational therapy that simultaneously inhibits PDGFR and the downstream Raf/MEK1/2/ERK1/2 pathway could represent an effective treatment for schwannomas and other merlin-deficient tumors.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.