Cell-in-cell (CIC) structures in breast cancer have so far been studied in a small inhomogeneous patient population, suggesting the prognostic importance of CIC. In the present study, we focused on CIC in early hormone-sensitive breast cancer. With in vitro co-culture experiments, we compared the homotypic phagocytic capacity of two breast cancer cell lines to that of primary human fibroblasts. Afterward, we studied 601 tissue specimens from 147 patients participating in an institutional accelerated partial breast irradiation (APBI) phase II trial. Both breast cancer cell lines performed non-professional phagocytosis at a higher rate than primary human fibroblasts. In this study cohort, 93.2% of the patients had T1 tumours, and 6.8% had T2 tumours. CIC was found in 61.2% of the patients, with a CIC rate ranging from <1/mm2 to 556.5/mm2 with a mean of 30.9/mm2 ± 68.4/mm2. CIC structures were prognostically favourable for local recurrence-free survival and disease-free survival. Regarding metastasis-free survival, CIC-positive patients had an unfavourable prognosis. Subgroup analysis indicated a correlation between a high proliferation index and high CIC rates. CIC had the highest prognostic value in young breast cancer patients (p = 0.004). With this study, we provide further evidence of CIC as a prognostic marker in breast cancer.
Background Research on cell-in-cell (CIC) phenomena, including entosis, emperipolesis and cannibalism, and their biological implications has increased in recent years. Homotypic and heterotypic engulfment of various target cells by numerous types of host cells has been studied in vitro and in tissue sections. This work has identified proteins involved in the mechanism and uncovered evidence for CIC as a potential histopathologic predictive and prognostic marker in cancer. Our experimental study focused on non-professional phagocytosis of leukocytes. Results We studied the engulfment of peripheral blood mononuclear cells isolated from healthy donors by counting CIC structures. Two non-tumorigenic cell lines (BEAS-2B, SBLF-9) and two tumour cell lines (BxPC3, ICNI) served as host cells. Immune cells were live-stained and either directly co-incubated or treated with irradiation or with conventional or microwave hyperthermia. Prior to co-incubation, we determined leukocyte viability for each batch via Annexin V-FITC/propidium iodide staining. All host cells engulfed their targets, with uptake rates ranging from 1.0% ± 0.5% in BxPC3 to 8.1% ± 5.0% in BEAS-2B. Engulfment rates of the cancer cell lines BxPC3 and ICNI (1.6% ± 0.2%) were similar to those of the primary fibroblasts SBLF-9 (1.4% ± 0.2%). We found a significant negative correlation between leukocyte viability and cell-in-cell formation rates. The engulfment rate rose when we increased the dose of radiotherapy and prolonged the impact time. Further, microwave hyperthermia induced higher leukocyte uptake than conventional hyperthermia. Using fluorescent immunocytochemistry to descriptively study the proteins involved, we detected ring-like formations of diverse proteins around the leukocytes, consisting, among others, of α-tubulin, integrin, myosin, F-actin, and vinculin. These results suggest the involvement of actomyosin contraction, cell-cell adhesion, and the α-tubulin cytoskeleton in the engulfment process. Conclusions Both non-tumorigenic and cancer cells can form heterotypic CIC structures by engulfing leukocytes. Decreased viability and changes caused by microwave and X-ray irradiation trigger non-professional phagocytosis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.