In most iron-based superconductors, the transition to the magnetically ordered state is closely linked to a lowering of structural symmetry from tetragonal (C4) to orthorhombic (C2). However, recently, a regime of C4-symmetric magnetic order has been reported in certain hole-doped ironbased superconductors. This novel magnetic ground state can be understood as a double-Q spin density wave characterized by two order parameters M1 and M2 related to each of the two Q vectors. Depending on the relative orientations of the order parameters, either a noncollinear spinvortex crystal or a nonuniform charge-spin density wave could form. Experimentally, Mössbauer spectroscopy, neutron scattering, and muon spin rotation established the latter as the magnetic configuration of some of these optimally hole-doped iron-based superconductors. Theoretically, lowenergy itinerant models do support a transition from single-Q to double-Q magnetic order, but with nearly-degenerate spin-vortex crystal and charge-spin density wave states. In fact, extensions of these low-energy models including additional electronic interactions tip the balance in favor of the spin-vortex crystal, in apparent contradiction with the recent experimental findings. In this paper, we revisit the phase diagram of magnetic ground states of low-energy multi-band models in the presence of weak disorder. We show that impurity scattering not only promotes the transition from C2 to C4-magnetic order, but it also favors the charge-spin density wave over the spin-vortex crystal phase. Additionally, in the single-Q phase, our analysis of the nematic coupling constant in the presence of disorder supports the experimental finding that the splitting between the structural and stripe-magnetic transition is enhanced by disorder.
We investigate the impact of impurity scattering on superconductivity in an anisotropic multiorbital model with spin-orbit coupling which describes the electron fluid at two-dimensional oxide interfaces. As the pairing mechanism is under debate, both conventional and unconventional superconducting states are analyzed. We consider magnetic and nonmagnetic spin-dependent intra-and interorbital scattering and discuss possible microscopic realizations leading to these processes. It is found that, for magnetic disorder, the unconventional superconductor is protected against interband scattering and, thus, more robust than the conventional condensate. In case of nonmagnetic impurities, the conventional superconductor is protected as expected from the Anderson theorem and the critical scattering rate of the unconventional state is enhanced by a factor of four due to the spin-orbit coupling and anisotropic masses in oxide interfaces. arXiv:1505.04919v1 [cond-mat.supr-con] 19 May 2015
We consider superconductivity in the presence of impurities in a two-band model suited for the description of iron-based superconductors. We analyze the effect of interband scattering processes on superconductivity, allowing for orbital, i. e., non-spin-magnetic but time-reversal-symmetry-breaking impurities. Pair-breaking in such systems is described by a nontrivial phase in an interbandscattering matrix element. We find that the transition temperature of conventional superconductors can be suppressed due to interband scattering, whereas unconventional superconductors may be unaffected. We also discuss the stability of density wave phases in the presence of impurities. As an example, we consider impurities associated with imaginary charge density waves that are of interest for iron-based superconductors.
We analyze the effect of weak disorder on the competition between antiferromagnetic order and superconductivity in a model for iron-based superconductors. Under the assumption of an approximate particle-hole symmetry we show that conventional s ++ superconductivity cannot be realized in the case of coexisting magnetic and superconductive orders, observed experimentally at intermediate doping levels. This result holds for arbitrary impurity concentrations, and, in particular, in the clean limit. The inclusion of disorder further amplifies the phase competition between itinerant antiferromagnetism and conventional superconductivity. In addition, we analyze the effect of disorder on the characteristic length scales of the two order parameters, and find that in a disordered sample the staggered moment fluctuates on shorter scales than the superconductive order parameter, even if both length scales are the same in the clean limit.
Through the Higgs mechanism, the long-range Coulomb interaction eliminates the low-energy Goldstone phase mode in superconductors and transfers spectral weight all the way up to the plasma frequency. Here we show that the Higgs mechanism breaks down for length scales shorter than the superconducting coherence length while it stays intact, even at high energies, in the long-wavelength limit. This effect is a consequence of the composite nature of the Higgs field of superconductivity and the broken Lorentz invariance in a solid. Most importantly, the breakdown of the Higgs mechanism inside the superconducting coherence volume is crucial to ensure the stability of the BCS mean-field theory in the weak-coupling limit. We also show that changes in the gap equation due to plasmoninduced fluctuations can lead to significant corrections to the mean-field theory and reveal that changes in the density-fluctuation spectrum of a superconductor are not limited to the vicinity of the gap. arXiv:1711.11382v2 [cond-mat.supr-con]
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.