During growth of multicellular organisms, identities of stem cells and differentiated cells need to be maintained. Cell fate is epigenetically controlled by the conserved Polycomb-group (Pc-G) proteins that repress their target genes by catalyzing histone H3 lysine 27 trimethylation (H3K27me3). Although H3K27me3 is associated with mitotically stable gene repression, a large fraction of H3K27me3 target genes are tissue-specifically activated during differentiation processes. However, in plants it is currently unclear whether H3K27me3 is already present in undifferentiated cells and dynamically regulated to permit tissue-specific gene repression or activation. We used whole-genome tiling arrays to identify the H3K27me3 target genes in undifferentiated cells of the shoot apical meristem and in differentiated leaf cells. Hundreds of genes gain or lose H3K27me3 upon differentiation, demonstrating dynamic regulation of an epigenetic modification in plants. H3K27me3 is correlated with gene repression, and its release preferentially results in tissue-specific gene activation, both during differentiation and in Pc-G mutants. We further reveal meristem- and leaf-specific targeting of individual gene families including known but also likely novel regulators of differentiation and stem cell regulation. Interestingly, H3K27me3 directly represses only specific transcription factor families, but indirectly activates others through H3K27me3-mediated silencing of microRNA genes. Furthermore, H3K27me3 targeting of genes involved in biosynthesis, transport, perception, and signal transduction of the phytohormone auxin demonstrates control of an entire signaling pathway. Based on these and previous analyses, we propose that H3K27me3 is one of the major determinants of tissue-specific expression patterns in plants, which restricts expression of its direct targets and promotes gene expression indirectly by repressing miRNA genes.
GAGA-motif binding proteins control transcriptional activation or repression of homeotic genes. Interestingly, there are no sequence similarities between animal and plant proteins. Plant BBR/BPC-proteins can be classified into two distinct groups: Previous studies have elaborated on group I members only and so little is known about group II proteins. Here, we focused on the initial characterization of AtBPC6, a group II protein from Arabidopsis thaliana. Comparison of orthologous BBR/BPC sequences disclosed two conserved signatures besides the DNA binding domain. A first peptide signature is essential and sufficient to target AtBPC6-GFP to the nucleus and nucleolus. A second domain is predicted to form a zipper-like coiled-coil structure. This novel type of domain is similar to Leucine zippers, but contains invariant alanine residues with a heptad spacing of 7 amino acids. By yeast-2-hybrid and BiFC-assays we could show that this Alanine zipper domain is essential for homotypic dimerization of group II proteins in vivo. Interhelical salt bridges and charge-stabilized hydrogen bonds between acidic and basic residues of the two monomers are predicted to form an interaction domain, which does not follow the classical knobs-into-holes zipper model. FRET-FLIM analysis of GFP/RFP-hybrid fusion proteins validates the formation of parallel dimers in planta. Sequence comparison uncovered that this type of domain is not restricted to BBR/BPC proteins, but is found in all kingdoms.
Spatial organization of chromatin contributes to gene regulation of many cellular processes and includes a connection of chromatin with the nuclear lamina (NL). The NL is a protein mesh that resides underneath the inner nuclear membrane and consists of lamins and lamina-associated proteins. Chromatin regions associated with lamins in animals are characterized mostly by constitutive heterochromatin, but association with facultative heterochromatin mediated by Polycomb-group (PcG) proteins has been reported as well. In contrast with animals, plant NL components are largely not conserved and NL association with chromatin is poorly explored. Here, we present the connection between the lamin-like protein, CROWDED NUCLEI1 (CRWN1), and the chromatin-and PcG-associated component, PROLINE-TRYPTOPHANE-TRYPTOPHANE-PROLINE INTERACTOR OF POLYCOMBS1, in Arabidopsis (Arabidopsis thaliana). We show that PWO1 and CRWN1 proteins associate physically with each other, act in the same pathway to maintain nuclear morphology, and control expression of a similar set of target genes. Moreover, we demonstrate that transiently expressed PWO1 proteins form foci located partially at the subnuclear periphery. Ultimately, as CRWN1 and PWO1 are plant-specific, our results argue that plants might have developed an equivalent, rather than homologous, mechanism of linking chromatin repression and NL.
Polycomb-group (PcG) proteins mediate epigenetic gene regulation by setting H3K27me3 via Polycomb Repressive Complex 2 (PRC2). In plants, it is largely unclear how PcG proteins are recruited to their target genes. Here, we identified the PWWP-DOMAIN INTERACTOR OF POLYCOMBS1 (PWO1) protein, which interacts with all three PRC2 histone methyltransferases and is required for maintaining full H3 occupancy at several Arabidopsis genes. PWO1 localizes and recruits CURLY LEAF to nuclear speckles in nuclei, suggesting a role in spatial organization of PcG regulation. belongs to a gene family with three members having overlapping activities: triple mutants are seedling lethal and show shoot and root meristem arrest, while single mutants are early flowering. Interestingly, the PWWP domain of PWO1 confers binding to histones, which is reduced by a point mutation in a highly conserved residue of this domain and blocked by phosphorylation of H3S28. PWO1 carrying this mutation is not able to fully complement the triple mutant, indicating the requirement of this domain for PWO1 in vivo activity. Thus, the PWO family may present a novel class of histone readers that are involved in recruiting PcG proteins to subnuclear domains and in promoting Arabidopsis development.
Polycomb-group (Pc-G) proteins are important regulators of many developmental processes in plants and animals and repress gene expression by imparting histone H3 lysine 27 trimethylation (H3K27me3). Here, we present the identification of the novel, plant-specific Arabidopsis thaliana protein BLISTER (BLI), which interacts with the Pc-G histone methyltransferase CURLY LEAF (CLF). We map the interaction of BLI with CLF to a predicted coiled-coil domain in BLI that shares similarity with STRUCTURAL MAINTENANCE OF CHROMOSOMES proteins. BLI colocalizes with CLF in the nucleus, shows an overlapping expression pattern with CLF throughout plant development that is strongest in dividing cells, and represses a subset of Pc-G target genes. Loss of BLI results in a pleiotropic developmental mutant phenotype, indicating that BLI prevents premature differentiation. Furthermore, bli mutants exhibit severe epidermal defects, including loss of cell adhesion, outgrowth of cells, and increased cotyledon cell size. As these phenotypes have not been observed in Pc-G mutants, we propose that BLI has functions related to Pc-G proteins but can also act independently in Arabidopsis development.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.