Single-photon sources are key building blocks in most of the emerging secure telecommunication and quantum information processing schemes. Semiconductor quantum dots (QD) have been proven to be the most prospective candidates. However, their practical use in fiber-based quantum communication depends heavily on the possibility of operation in the telecom bands and at temperatures not requiring extensive cryogenic systems. In this paper we present a temperature-dependent study on single QD emission and single-photon emission from metalorganic vapour-phase epitaxy-grown InGaAs/GaAs QDs emitting in the telecom O-band at 1.3 μm. Micro-photoluminescence studies reveal that trapped holes in the vicinity of a QD act as reservoir of carriers that can be exploited to enhance photoluminescence from trion states observed at elevated temperatures up to at least 80 K. The luminescence quenching is mainly related to the promotion of holes to higher states in the valence band and this aspect must be primarily addressed in order to further increase the thermal stability of emission. Photon autocorrelation measurements yield single-photon emission with a purity of $${g}_{50K}^{(2)}\left(0\right)=0.13$$ g 50 K ( 2 ) 0 = 0.13 up to 50 K. Our results imply that these nanostructures are very promising candidates for single-photon sources at elevated (e.g., Stirling cryocooler compatible) temperatures in the telecom O-band and highlight means for improvements in their performance.
Magneto-optical parameters of trions in novel large and symmetric InP-based quantum dots, uncommon for molecular beam epitaxy-grown nanostructures, with emission in the third telecom window, are measured in Voigt and Faraday configurations of an external magnetic field. The diamagnetic coefficients are found to be in the range of 1.5–4 μeV/T2, and 8–15 μeV/T2, respectively out-of-plane and in-plane of the dots. The determined values of diamagnetic shifts are related to the anisotropy of dot sizes. Trion g-factors are measured to be relatively small, in the range of 0.3–0.7 and 0.5–1.3, in both configurations, respectively. Analysis of single carrier g-factors, based on the formalism of spin-correlated orbital currents, leads to similar values for hole and electron of ~0.25 for Voigt and ge ≈ −5; gh ≈ +6 for Faraday configuration of the magnetic field. Values of g-factors close to zero measured in Voigt configuration make the investigated dots promising for electrical tuning of the g-factor sign, required for schemes of single spin control in qubit applications.
Single InP-based quantum dots emitting in the third telecom window are probed quasi-resonantly in polarization-resolved microphotoluminescence experiments. For charged quantum dots we observe negative circular polarization being a fingerprint of the optical spin writing of the carriers within the quantum dots. The investigated quantum dots have a very dense ladder of excited states providing relatively easy quasi-resonant optical excitation, and together with telecom wavelengths emission they bring quantum gates and memories closer to compatibility with fiber-optic communication.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.