Detection of hepadnaviral DNA in extrahepatic tissues of human and animal models of hepatitis B virus (HBV) has raised the question of whether virus replication in organs other than the liver could be targeted for the treatment of chronic hepatitis B. Since duck hepatitis B virus (DHBV) replication is dynamic in the liver, kidney, pancreas, and spleen of newly hatched ducklings infected in ovo, we used the duck model and the new antiherpesvirus agent, famciclovir (FCV), to determine whether antiviral effect of nucleoside analogues on DHBV replication is pluripotential. Day-old ducklings hatched from eggs laid by a DHBV-carrier duck were bled and administered FCV (25 mg/kg/bd) orally for periods of 1, 2, 3, 6, 9, and 12 days. Seventeen (17) hours after the last dose of each regimen the duckling(s) was bled and postmortem samples of liver, kidney, pancreas, and spleen were snap-frozen and stored at -70 degrees C. Analysis of plasma samples of ducklings treated for 2 days and longer by dot-blot hybridisation showed that levels of DHBV DNA were reduced significantly compared to levels in samples collected before treatment begun. Southern blot hybridisation of tissue DNA corroborated these results and showed that DHBV DNA replicative intermediates in all the tissues examined were reduced to levels that reflected the amount of virus released into the blood of each treated duckling. It is concluded from these results that if antiviral agents could be transformed to active metabolites in any infected tissues including the liver, replication of hepadnaviruses would be inhibited.(ABSTRACT TRUNCATED AT 250 WORDS)
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.