Rank-2 tensors are unable to represent multi-modal diffusion associated with intra-voxel orientational heterogeneity (IVOH), which occurs where axons are incoherently oriented, such as where bundles intersect or diverge. Under this condition, they are oblate or spheroidally shaped, resulting in artefactually low anisotropy, potentially masking reduced axonal density, myelinisation and integrity. Higher rank tensors can represent multi-modal diffusion, and suitable metrics such as generalised anisotropy (GA) and scaled entropy (SE) have been introduced. The effect of tensor rank was studied through simulations, and analysing high angular resolution diffusion imaging (HARDI) data from two volunteers, fit with rank-2, rank-4 and rank-6 tensors. The variation of GA and SE as a function of rank was investigated through difference maps and region of interest (ROI)-based comparisons. Results were correlated with orientation distribution functions (ODF) reconstructed with q-ball, and with colour-maps of the principal and second eigenvectors. Simulations revealed that rank-4 tensors are able to represent multi-modal diffusion, and that increasing rank further has a minor effect on measurements. IVOH was detected in subcortical regions of the corona radiata, along the superior longitudinal fasciculus, in the radiations of the genu of the corpus callosum, in peritrigonal white matter and along the inferior fronto-occipital and longitudinal fascicula. In these regions, elevating tensor rank increased anisotropy. This was also true for the corpus callosum, cingulum and anterior limb of the internal capsule, where increasing tensor rank resulted in patterns that, although mono-modal, were more anisotropic. In these regions the second eigenvector was coherently oriented. As rank-4 tensors have only 15 distinct elements, they can be determined without acquiring a large number of directions. By removing artefactual underestimation of anisotropy, their use may increase the sensitivity to pathological change.
CE MR angiography performed with 0.1 mmol/kg gadobenate dimeglumine, compared with DSA, is safe and provides good sensitivity, specificity, and accuracy for detection of significant renal artery steno-occlusive disease.
The primary purpose of this work was to assess long‐term in vitro reproducibility of metabolite levels measured using 1H MRS (proton magnetic resonance spectroscopy). The secondary purpose was to use the in vitro results for interpretation of ‘H MRS in vivo spectra acquired from patients diagnosed with Canavan disease. 1H MRS measurements were performed in the period from April 2006 to September 2010. 118 short and 116 long echo spectra were acquired from a stable phantom during this period. Change‐point analysis of the in vitro N‐acetylaspartate levels was exploited in the computation of fT factor (ratio of the actual to the reference N‐acetylaspartate level normalized by the reciprocity principle). This coefficient was utilized in the interpretation of in vivo spectra analyzed using absolute reference technique. The monitored time period was divided into six time intervals based on short echo in vitro data (seven time intervals based on long echo in vitro data) characterized by fT coefficient ranging from 0.97 to 1.09 (based on short echo data) and from 1.0 to 1.11 (based on long echo data). Application of this coefficient to interpretation of in vivo spectra confirmed increased N‐acetylaspartate level in Canavan disease. Long‐term monitoring of an MRS system reproducibility, allowing for absolute referencing of metabolite levels, facilitates interpretation of metabolic changes in white matter disorders.PACS numbers: 87.19.lf, 87.61.Tg, 87.64.K‐, 87.64.kj
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.