Tracking and action-recognition algorithms are currently widely used in video surveillance, monitoring urban activities and in many other areas. Their development highly relies on benchmarking scenarios, which enable reliable evaluations/improvements of their efficiencies. Presently, benchmarking methods for tracking and action-recognition algorithms rely on manual annotation of video databases, prone to human errors, limited in size and time-consuming. Here, using gained experiences, an alternative benchmarking solution is presented, which employs methods and tools obtained from the computer-game domain to create simulated video data with automatic annotations. Presented approach highly outperforms existing solutions in the size of the data and variety of annotations possible to create. With proposed system, a potential user can generate a sequence of random images involving different times of day, weather conditions, and scenes for use in tracking evaluation. In the design of the proposed tool, the concept of crowd simulation is used and developed. The system is validated by comparisons to existing methods.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.