• Salinity represents an abiotic stress constraint affecting growth and productivity of plants • Better solutions is to improve the level of salt resistance using natural genetic variability within crop species • Phenomic methodology employing different non-invasive imaging systems for detecting quantitative and qualitative changes caused by salt stress at the whole plant and canopy level. Hyperspectral imaging techniques provide unique opportunities for fast and reliable evaluation of numerous characteristics associated both with various structural, biochemical and physiological traits • Salt-soil-plant interaction and sustainable coastal agriculture need powerful phenotyping tools Salinity represents an abiotic stress constraint affecting growth and productivity of plants in many regions of the world. One of the possible solutions is to improve the level of salt resistance using natural genetic variability within crop species. In the context of recent knowledge on salt stress effects and mechanisms of salt tolerance, this review present useful phenomic approach employing different non-invasive imaging systems for detection of quantitative and qualitative changes caused by salt stress at the plant and canopy level. The focus is put on hyperspectral imaging technique, which provides unique opportunities for fast and reliable estimate of numerous characteristics associated both with various structural, biochemical Science of the Total Environment 578 (2017) 90-99 ⁎ Corresponding authors at:
The effect of salinity on primary photochemical reactions (using JIP-test) in six sweet sorghum genotypes was tested. An increase in salt concentrations induced significantly the accumulation of proline and caused a decline in leaf osmotic potential. Except for 100 mM NaCl concentration, salinity significantly decreased chlorophyll content and photosynthetic efficiency of plants. Increasing salinity led to a higher accumulation of QB-nonreducing PSII reaction centers. K-step in OJIP fluorescence transient was observed for the most sensitive genotypes under the high NaCl concentration. The studied sorghum genotypes responded differently to salinity stress. Thus, the study helps understand the plant tolerance mechanisms of different sweet sorghum genotypes to increasing salinity stress. The study also confirmed that the use of JIP-test is suitable for the identification of sorghum genotypes according to their growth under salinity stress.
Nondestructive assessment of water content and water stress in plants is an important component in the rational use of crop irrigation management in precision agriculture. Spectral measurements of light reflectance in the UV/VIS/NIR region (350–1075 nm) from individual leaves were acquired under a rapid dehydration protocol for validation of the remote sensing water content assessment in soybean plants. Four gravimetrical approaches of leaf water content assessment were used: relative water content (RWC), foliar water content as percent of total fresh mass (FWCt), foliar water content as percent of dry mass (FWCd), and equivalent water thickness (EWT). Leaf desiccation resulted in changes in optical properties with increasing relative reflectance at wavelengths between 580 and 700 nm. The highest positive correlations were observed for the relations between the photochemical reflectance index (PRI) and EWT (rP = 0.860). Data analysis revealed that the specific water absorption band at 970 nm showed relatively weaker sensitivity to water content parameters. The prediction of leaf water content parameters from PRI measurements was better with RMSEs of 12.4% (rP = 0.786), 9.1% (rP = 0.736), and 0.002 (rP = 0.860) for RWC, FWCt, and EWT (p < 0.001), respectively. The results may contribute to more efficient crop water management and confirmed that EWT has a statistically closer relationship with reflectance indices than other monitored water parameters.
Photosynthesis limitation by CO2 flow constraints from sub-stomatal cavities to carboxylation sites in chloroplasts under drought stress conditions is, at least in some plant species or crops not fully understood, yet. Leaf mesophyll conductance for CO2 (gm) may considerably affect both photosynthesis and water use efficiency (WUE) in plants under drought conditions. The aim of our study was to detect the responses of gm in leaves of four winter wheat (Triticum aestivum L.) genotypes from different origins under long-term progressive drought. Based on the measurement of gas-exchange parameters the variability of genotypic responses was analyzed at stomatal (stomata closure) and non-stomatal (diffusional and biochemical) limits of net CO2 assimilation rate (AN). In general, progressive drought caused an increasing leaf diffusion resistance against CO2 flow leading to the decrease of AN, gm and stomatal conductance (gs), respectively. Reduction of gm also led to inhibition of carboxylation efficiency (Vcmax). On the basis of achieved results a strong positive relationship between gm and gs was found out indicating a co-regulation and mutual independence of the relationship under the drought conditions. In severely stressed plants, the stomatal limitation of the CO2 assimilation rate was progressively increased, but to a less extent in comparison to gm, while a non-stomatal limitation became more dominant due to the prolonged drought. Mesophyll conductance (gm) seems to be a suitable mechanism and parameter for selection of improved diffusional properties and photosynthetic carbon assimilation in C3 plants, thus explaining their better photosynthetic performance at a whole plant level during periods of drought.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.