Despite all of the advantages of tags as an easy and flexible information management approach, tagging is a cumbersome task. A set of descriptive tags has to be manually entered by users whenever they post a resource. This process can be simplified by the use of tag recommendation systems. Their objective is to suggest potentially useful tags to the user. We present a hybrid tag recommendation system together with a scalable, highly efficient system architecture. The system is able to utilize user feedback to tune its parameters to specific characteristics of the underlying tagging system and adapt the recommendation models to newly added content. The evaluation of the system on six real-life datasets demonstrated the system’s ability to combine tags from various sources (e.g., resource content or tags previously used by the user) to achieve the best quality of recommended tags. It also confirmed the importance of parameter tuning and content adaptation. A series of additional experiments allowed us to better understand the characteristics of the system and tagging datasets and to determine the potential areas for further system development.
The objective of a tag recommendation system is to propose a set of tags for a resource to ease the tagging process done manually by a user. Tag recommendation is an interesting and well defined research problem. However, while solving it, it is easy to forget about its practical implications. We discuss the practical aspects of tag recommendation and propose a system that successfully addresses the problem of learning in tag recommendation, without sacrificing efficiency. Learning is realized in two aspects: adaptation to newly added posts and parameter tuning. The content of each added post is used to update the resource and user profiles as well as associations between tags. Parameter tuning allows the system to automatically adjust the way tag sources (e.g., content related tags or user profile tags) are combined to match the characteristics of a specific collaborative tagging system. The evaluation on data from three collaborative tagging systems confirmed the importance of both learning methods. Finally, an architecture based on text indexing makes the system efficient enough to serve in real time collaborative tagging systems with number of posts counted in millions, given limited computing resources.
Size and complexity of data repositories collaboratively created by Web users generate a need for new processing approaches. In this paper, we study the problem of detection of fine-grained communities of users in social networks, which can be defined as clustering with a large number of clusters. The practical size of social networks makes the traditional evolutionary based clustering approaches, which represent the entire clustering solution as one individual, hard to apply. We propose an Agglomerative Clustering Genetic Algorithm (ACGA): a population of clusters evolves from the initial state in which each cluster represents one user to a high quality clustering solution. Each step of the evolutionary process is performed locally, engaging only a small part of the social network limited to two clusters and their direct neighborhood. This makes the algorithm practically useful independently of the size of the network. Evaluation on two social network models indicates that ACGA is potentially able to detect communities with accuracy comparable or better than two typical centralized clustering algorithms even though ACGA works under much stricter conditions.
Social networks and collaborative tagging systems are rapidly gaining popularity as a primary means for storing and sharing data among friends, family, colleagues, or perfect strangers as long as they have common interests. del.icio.us3 is a social network where people store and share their personal bookmarks. Most importantly, users tag their bookmarks for ease of information dissemination and later look up. However, it is the friendship links, that make del.icio.us a social network. They exist independently of the set of bookmarks that belong to the users and have no relation to the tags typically assigned to the bookmarks. To study the interaction among users, the strength of the existing links and their hidden meaning, we introduce implicit links in the network. These links connect only highly “similar” users. Here, similarity can reflect different aspects of the user’s profile that makes her similar to any other user, such as number of shared bookmarks, or similarity of their tags clouds. The authors investigate the question whether friends have common interests, they gain additional insights on the strategies that users use to assign tags to their bookmarks, and they demonstrate that the graphs formed by implicit links have unique properties differing from binomial random graphs or random graphs with an expected power-law degree distribution.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.