The solution to the impact-parameter dependent Balitsky-Kovchegov equation with the collinearly improved kernel is studied in detail. The solution does not present the phenomenon of Coulomb tails at large impact parameters that have affected previous studies. The origin of this behaviour is explored numerically. It is found to be linked to the fact that this kernel suppresses large daughter dipoles. Solutions based on a physics motivated form of the initial condition are used to compute predictions for structure functions of the proton and the exclusive photo-and electroproduction of vector mesons. A reasonable agreement is found when comparing to HERA and LHC data.
We solved the impact-parameter dependent Balitsky-Kovchegov equation with the recently proposed collinearly improved kernel. We find that the solutions do not present the Coulomb tails that have affected previous studies. We also show that once choosing an adequate initial condition it is possible to obtain a reasonable description of HERA data on the structure function of the proton, as well as on the cross section for the exclusive production of a J/ψ vector meson off proton targets. As a further application of the solutions, we computed the impact-parameter dependent Weizsäcker-Williams gluon distribution.
We study the disappearance of the away-side peak of the di-hadron correlation function in p+A vs p+p collisions at forward rapidities, when the scaterring process presents a manifest dilute-dense asymmetry. We improve the state-of-the-art description of this phenomenon in the framework of the Color Glass Condensate (CGC), for hadrons produced nearly back-to-back. In that case, the gluon content of the saturated nuclear target can be described with transverse-momentumdependent gluon distributions, whose small-x evolution we calculate numerically by solving the Balitsky-Kovchegov equation with running coupling corrections. We first show that our formalism provides a good description of the disappearance of the away-side azimuthal correlations in d+Au collisions observed at BNL Relativistic Heavy Ion Collider (RHIC) energies. Then, we predict the away-side peak of upcoming p+Au data at √ s = 200 GeV to be suppressed by about a factor 2 with respect to p+p collisions, and we propose to study the rapidity dependence of that suppression as a complementary strong evidence of gluon saturation in experimental data.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.