Abstract. The paper presents a method developed and applied for observation of cavitation effects on material of different properties. It is intended for observation of cavitation effects of microorifices on selected materials. In the paper are presented some results obtained in our institute by applying of presented method.
The thermal usage of liquid fuels implies their combustion, which is a process strongly influenced by the performance of the atomizer, which disrupts the fuel into drops of the required sizes. The spray quality of the twin-fluid atomizers with internal mixing (IM-TFA) is primarily influenced by the two-phase flow pattern inside the mixing chamber. We studied the performance of the four types of the IM-TFA nozzles by the optical diffraction system (Malvern Spraytec) to answer the question of how the mixing chamber design influences the spray quality at low atomizing gas consumption. We tested the effervescent atomizer in outside-in-liquid (OIL) and outside-in-gas (OIG) configurations, the Y-jet nozzle and new nozzle design, and the CFT atomizer when spraying model liquids with the viscosities comparable to the common fuels (μ=60and143 mPa· s). We found that the effervescent atomizer performance was strongly influenced by the configuration of the inlet ports. Although the OIL configuration provided the best spray quality (D32 = 72 μm), with the highest efficiency (0.16%), the OIG nozzle was characterized by unstable work and poor spray quality. Both the devices were sensitive to liquid viscosity. The Y-jet nozzle provided a stable performance over the liquid viscosity spectrum, but the spray quality and efficiency were lower than for the OIL nozzle. Our findings can be used to improve the performance of the common IM-TFA types or to design new atomizers. The results also provide an overview of the tested atomizers’ performances over the wide range of working conditions and, thus, help to define the application potential of the tested nozzle designs.
The article describes the application of a mathematical model to a natural circulation loop. A set of measurements were conducted at the experimental facility. The pressure and velocity relations were observed during the steady flow of helium. The main goal was to create a numerical model of flow capable of determining the velocity of flowing medium. The model describes the flow of highly compressed gaseous medium with variable density in direct pipelines with local resistances. At the current state, the temperature values along the loop are taken as input to the model. The article also includes the evaluation of local resistances in DHR and GFR, which significantly affects the resulting accuracy. The results from a numerical model are compared with experiments.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.