• High-level miR-155 enhances BCR signaling, and is associated with poor prognosis in CLL.• Signals within the CLL microenvironment, such as CD154 or BAFF, can induce miR-155 and enhance BCR signaling.High-level leukemia cell expression of micro-RNA 155 (miR-155) is associated with more aggressive disease in patients with chronic lymphocytic leukemia (CLL), including those cases with a low-level expression of z-chain-associated protein of 70 kD. CLL with highlevel miR-155 expressed lower levels of Src homology-2 domain-containing inositol 5-phosphatase 1 and were more responsive to B-cell receptor (BCR) ligation than CLL with low-level miR-155. Transfection with miR-155 enhanced responsiveness to BCR ligation, whereas transfection with a miR-155 inhibitor had the opposite effect. CLL in lymphoid tissue expressed higher levels of miR155HG than CLL in the blood of the same patient. Also, isolated CD5 bright CXCR4 dim cells, representing CLL that had been newly released from the microenvironment, expressed higher levels of miR-155 and were more responsive to BCR ligation than isolated CD5 dim CXCR4 bright cells of the same patient.Treatment of CLL or normal B cells with CD40-ligand or B-cell-activating factor upregulated miR-155 and enhanced sensitivity to BCR ligation, effects that could be blocked by inhibitors to miR-155. This study demonstrates that the sensitivity to BCR ligation can be enhanced by high-level expression of miR-155, which in turn can be induced by crosstalk within the tissue microenvironment, potentially contributing to its association with adverse clinical outcome in patients with CLL. (Blood. 2014;124(4):546-554)
In chronic lymphocytic leukemia (CLL), the worst prognosis is associated with TP53 defects with the affected patients being potentially directed to alternative treatment. Therapy administration was shown to drive the selection of new TP53 mutations in CLL. Using ultra-deep next-generation sequencing (NGS), we performed a detailed analysis of TP53 mutations' clonal evolution. We retrospectively analyzed samples that were assessed as TP53-wild-type (wt) by FASAY from 20 patients with a new TP53 mutation detected in relapse and 40 patients remaining TP53-wt in relapse. Minor TP53-mutated subclones were disclosed in 18/20 patients experiencing later mutation selection, while only one minor-clone mutation was observed in those patients remaining TP53-wt (n=40). We documented that (i) minor TP53 mutations may be present before therapy and may occur in any relapse; (ii) the majority of TP53-mutated minor clones expand to dominant clone under the selective pressure of chemotherapy, while persistence of minor-clone mutations is rare; (iii) multiple minor-clone TP53 mutations are common and may simultaneously expand. In conclusion, patients with minor-clone TP53 mutations carry a high risk of mutation selection by therapy. Deep sequencing can shift TP53 mutation identification to a period before therapy administration, which might be of particular importance for clinical trials.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.